

ALPINE: A Large Survey to Understand Teenage Galaxies

(Caltech/IPAC) afaisst@caltech.edu

Marseille, July 2022

Andreas Faisst

Collage of ALPINE galaxies imaged in C⁺ at 158µm with ALMA Background: II Zw 40 (similar to high-z galaxies?)

The Big Picture of Galaxy Evolution

Hubble Deep Field

Hubble Deep Field

Star Forming Galaxies (t = 13.7 Gyrs; z = 0)

Hubble Deep Field

Quiescent Elliptical Galaxy (t = 13.7 Gyrs; z = 0)

Hubble Deep Field

Star Forming Galaxy at Peak of Cosmic Star Formation (t = 3.2 Gyrs, z = 2)

Primordial Galaxy in the Early Universe (t = 700 Myrs; z = 7)

Hubble Deep Field

Goal: Find a Coherent physical picture to explain the evolution of galaxies, their interiors, and environment through cosmic time

> 3.2 Gyrs (z = 2)

Production of Stars and Structure over Cosmic Time

Data from: Madau & Dickinson (2014); Bouwens et al. (2015)

Data from: Madau & Dickinson (2014); Bouwens et al. (2015)

What characterizes a galaxy?

Star Formation and **Radiation Field**

Star Formation and Radiation Field

Star Formation and Radiation Field

Stellar mass / Structure

Star Formation and Radiation Field

14

Stellar mass / Structure

Star Formation and Radiation Field

Stellar mass / Structure

Dust Content

Star Formation and Radiation Field

Stellar mass / Structure

Dust

Content

Gas Content

Viole Ultra

Star Formation and **Radiation Field**

Metal

Content

Optical

Stellar mass / Structure

Multi-Wavelength Sample is Needed

Dark Matter Halo Mass and Environment

> Dust Content

Gas Content

Can we extrapolate from lower redshifts?

Extrapolation from Lower Redshifts

We can (maybe?) extrapolate the properties of high-z galaxies from galaxies at lower redshifts (z < 3)

 Irregular structure, suggesting turbulent gas accretion and growth, and possible lack of "disk galaxies"

Förster-Schreiber et al. (2011)

z = 2

Extrapolation from Lower Redshifts

We can (maybe?) extrapolate the properties of high-z galaxies from galaxies at lower redshifts (z < 3)

- Irregular structure, suggesting turbulent gas accretion and growth, and possible lack of "disk galaxies"
- Galaxies are rich in gas, suggesting high star formation rates

Extrapolation from Lower Redshifts

We can (maybe?) extrapolate the properties of high-z galaxies from galaxies at lower redshifts (z < 3)

- Irregular structure, suggesting turbulent gas accretion and growth, and possible lack of "disk galaxies"
- Galaxies are rich in gas, suggesting high star formation rates
- Galaxies have less metals and probably very little dust

So, are we done?

The Role of ALMA

Large samples of z > 4 galaxies have been observed **mostly** at rest-frame UV (e.g., luminosity functions).

The Role of ALMA

Large samples of z > 4 galaxies have been observed **mostly** at rest-frame UV (e.g., luminosity functions).

<u>BUT</u>: at z=4-6 still > 40% of UV light is reprocessed by dust! And ~10% is missed completely!

ALMA is necessary to study the "missing" light!

- measurements (Capak et al. 2015)

We Need Larger Samples!

What about going for a large ALMA proposal? ... the birth of ALPINE

The ALPINE Survey **ALPINE** = ALMA Large Program to Nvestigate C⁺ at Early times Pls: <u>LeFèvre</u>, **Faisst**, Béthermin, **Cassata**, **Schaerer**, **Silverman**, Yan, Capak

- 70 hours of ALMA observations (cycle 5, Band 7) of singly ionized Carbon emission (C⁺) at 158µm and surrounding dust continuum
- 118 average teenage galaxies in total (largest sample so far!)
- Redshifts z = 4 6 (1- 1.5 billion years after the Big Bang)
- First true multi-wavelength survey at z > 4!

27 Papers since 2019!!

Measure C⁺ emission (gas)

- Kinematics (disk galaxies!)
- Gas fractions
- Outflows & Mergers

http://alpine.ipac.caltech.edu https://cesam.lam.fr/a2c2s/data_release.php

Measure 150µm continuum (dust)

- Hidden star formation
 - Dust content
- Finding dust-obscured galaxies

ALPINE: the First Large Multi-Wavelength Study of z > 4 Galaxies

ALPINE is Global

ALPINE PI team: Olivier LeFèvre - LAM A. Faisst - Caltech M. Béthermin - LAM P. Cassata - Padova D. Schaerer - Geneva J. Silverman - IPMU L. Yan - Caltech P. Capak - Caltech

ALPINE is Global

"Who does what and when"

> ALPINE PI team: Olivier LeFèvre - LAM A. Faisst - Caltech M. Béthermin - LAM P. Cassata - Padova D. Schaerer - Geneva J. Silverman - IPMU L. Yan - Caltech P. Capak - Caltech

Original Google Doc listing ALPINE papers

(Olivier's favorite document)

				Fe	eb 3, 2021					
85	Papers of opportunity: Present some cool galaxies Pick nice galaxies from the sample and expore their properties with ACS imaging, spectra, [CII] and FIR continuum. BSa: Triple merger system + kinematics (Gareth) BSb: [CII] enitter blind, offset	May 2019 Jones Romandi	Faisst Le Firm. Tasca	Receiption .		81	Outflows from (21) Outflows from (21) Outflows from (21) Outflows from (21) Follow-sp of an inflow co Offset [Ci]] a	stofie sence of outflows and mas tections and stacking for a tils servations with ALMA to de moment is present as well and continuum	s outSow rate verage stermine if	Ginelfi, Jon (May 2019)
8	Pair fraction and ("najor") merger rate at z=5 • Identify pairs, separations, mass ratio, merging timescale	M. Romano	Tasca, Faisst	ongoing						
82	[CII] vs. SFR [CII] as SFR indicator Compare SFR from [CII] to other estimators (Also look at Ha from Spitzer?) SFR_UV vs. SFR_IR	Schoener (May 2019)	Bethennin, Faisst, Le Fèvre,	accepted						
	Luminosity function of FIR continuum serendipitous sources	Gruppioni, (Bethermin) (May 2019)	Talia, Fozzi, Bardell, Zucca, Zamorani, Cassata, Capak, Le Févre	accepted						
•	Velocity offsets between [CII], Lya, absorption lines	Cassata, Faisst	Fudarroto, Ginolfi, Le Fèvre,	accepted]					
B10	Kinematic modeling of [CII] Build up of disks over cosmic time Dynamical nasses (collaborate with <u>C8</u>) High resolution follow-up ALMA observations Scaling relations (Girard)	Jones, Pavesi (May 2019)	Capak, Faisst, Girard, Dessauges, Riechers, Silverman, Narayanan, Toft, Le Févre	ongoing (draft sent out to ALPINE community, comments by Feb 12)						

_					Fe	6 3, 2021
	C17	Stacking of C+ non-detections using the velocity offsets between detected C+ and Lya	L. Morselli	Cassata, Faisst,	on going	
	C18	Resolved Kernicutt-Schmidt relation + models	Vallini+Dessauges+ Ginolfi	Fujimoto, Faisst	to be started now	

D. Other papers	
Important papers besides	the [CII] emitters

•	Торіс	Lead (Submission date)	Interested	Status
D1	Physical and molecular characterisation of sources in a v/sigma relation and their environment	Vergani	M. Dessauges, C. Gruppioni, M. Talia, Zamorani, Narayanan, B. Epinat + student (external collab)	started (results soon)
D2	Luminosity function of serendipitous CII sources. Also include archival data? Catalog paper and luminosity function	Loiacono (Cimatti/Talia)	Bethermin, Gruppioni, Pozzi, Bardell, Zucca, Zamorani, Riechers, Narayanan	accepted
D3	Characterization of serendipitous CO and CII sources (physical properties, molecular gas, kinematics) focusing on environment and clustering properties	Gruppioni w/ student, Romano, Cassata, Talia	Pozzi, Vallini, Zamorani, Vergani, Dessauges, Riechers, Narayanan, Bethermin, Patissi	ongoing
D6	Characterization of serendipitous continuum sources D6a: physical properties of the general sample, with a focus on molecular gas D6b: AGN candidates (BHAR vs z) D6c: HSTdark sources (better characterization) comparing results with different sample	D5a: Talia D6b: Gruppiori, Vergani D5c: Giacometi (studient), Gruppioni	D6a: Gruppioni, Bethermin, Pozzi D6b: Talia, Delvecchio (external collab) D6c: Talia	D6a: ongoing (draft soon) D6b: starting D6c: ongoing

					3, 2021	Fr
	D7 On one galaxy with [OII] measurement from Keck/MOSFIRE. Compare SFRs (UV, FIR, C+, [OII]) and also model [OII]/C+ in CLOUDY.	B. Vanderhoof, Faisst		ongoing (complete draft in February)	ract, https://drive.google.com/file/d/14k16NUkngESve5UwyTy0Zv uVpQ8ppRY8/view?usp=sharing)	
	E. Papers in collaboration with people outside of the ALPIN	E collaboration			By using this sample of ~ 17 galaxies I would like to investigate the dynamical scaling relations (e.g., Tulty-Fisher, Fall relations) and compare them with predictions from	
•	Topic	Lead (Submission date)	Interested	Status	cosmological simulations (e.g., EAGLE, IllustrisTNG50, https://ui.adsabs.harvard.edu/abs/2017MNRAS.464.3850L/a https://	
E	3 *We will start this science project within the PhD thesis of Jana Bogdaroska (LAM, France). Maybe 1 other young colleague working in LAM could also join later on.	D. Burgarella, Mederic Boquien	Bethermin, Cassata, Faisst, Schaerer, Silverman, Yan,	ongoing	https://ui.adsabs.harvard.edu/abs/2019MNRAS.490.3196P/a bstract).	

•	Topic	Lead (Submission date)	Interested	Status
E1	* We will start this science project within the PhD thesis of Jana Bogdaroska (LAM, France). Maybe 1 other young colleague working in LAM could also join later on. * Building a nulti-wavelength catalogue of a sample of galaxies with z_spec, UV-selected ALPINE + IR-selected SMGs at z > 4 - 5 (already done for photometry but we need to collect optical emission lines). * Using the CIGALE code that allows to fit the photometric data points and the main features (lines, indices). * Constraining the evolution status of these galaxies and their stellar populations (SFR, Mstar, SFRD, etc.). * Constraining the dust characteristics from the dust emission and the dust attenuation law and the implication on the evolution of <a. fuv(z)="">.</a.>	D. Burganella, Mederic Boquien	Bethermin, Cassata, Faisst, Schaerer, Silverman, Yan, Riechers, Gruppioni, Talia, Jones, Hathi, Ibar, Ginolfi, Lemaux, Vergani	ongoing
E2	Using ALPINE as comparison sample for z > 6 quasars (also from HSC team)	Fujimoto + Silverman et al.	Some HSC members	ongoing
E3	Focus on the ALPINE rotators, study them in details and then add these galaxies to: - a sample of 5 z ~ 4.5 rotators from the literature with accurate kinematic characterization (Sharda et al, Neeleman et al. 2020, Fratemail et al. 2020, Lell et al. 2021, accepted) - a sample of 7 z ~ 4.5 lensed galaxies which have been studied in my two papers (https://lui.adsabs.harvard.edu/abs/2020Natur.584_201R/abst	Francesca Rizzo	Jones, Ginolfi, Fuijimoto, Toft, Ibar, Lemaux, Dessauges, Faisst, Vergani	ongoing

ALPINE papers spring 2020

Updated on Hebruary 3, 2021 Legend:

ced and/or Sub

Others: planned or ongoing

A Immediate large papers

These are papers that present ALPINE and should be cited when using ALPINE data...

*	Торіс	Lead (Submission date)	Interested	Status
A1	Survey description paper Survey strategy and goals Selection function General properties of the survey (fields, anciliary data available, depth, etc), Observational strategy, observations Presentation of the general properties of the sample (c-distribution, maas distribution, GFR-GED) distribution, Broad classes and classification of [CII] emitters with examples for each	Le Fèvre (March-May 2019) List of authors, OLF.cor Pis, all,	ALL.	Accepted

	Data reduction paper Data reduction Continuum Catalog Serendipitous seurces with contamination Deblending Continuum source properties [Cil] catalog [Cil] source properties	Bethermin (May 2015) List of authors: Béthermin, Fudamoto, Ginotfi, co-Pts, all	ALL	
A 3	Ancillary data paper Photometry, incl. Astrometry Spectroscopy, incl. Lya SED fitting	Faisst (May 2010) List of authors: Faisst, co-Pli, all	Capak, Bethermo, Le Févre, Geneva (Fudamoto, Oesch) Schaerer), Narayanan, Toft, ALL	

B. Immediate small papers (letters)

These are small papers on immediate interesting topics.

*	Торіс	Lead (Submission date)	Interested	8
83	Letter on the IRX-Beta diagram of the ALPINE sample and evolution from z=3 to z=6	Fudamoto/Oesch/et c (May 2019)	Capak, Bethermit, Faisst, Le Févre, Geneva, Narayanan, Riechers	•
8	SFRD_FIR Outline from MatthleuYana	Khusanova (May 2019)	Capas, Bethermin, Le Fèvre, Narayanan	8

Feb 3, 2021

C. Papers presenting a complete statistical analysis of the [CII] sample (targeted and serendipitous)

Feb 3, 2021

Feb 3, 2021

	Торіс	Lead (Submission date)	Interesied	Status
CI	IRX-B and dust mass evolution. Focussed on attenuation SED (CIGALE) fitting including FIR measurements to get dust masses Redshift evolution of dust massidensity Comparison to analytical models of dust attenuation/nass and evolution with stellar mass, and other properties Serendipitous galaxies? Low-z? "Merging" with E1	Ginolfi, Schaerer, Fudanoto, Oesch, Boquien	Faisst, Capak, Cassata, Le Fèvra, Narayanan, Talia, Toft	Ongoing??
C2	Dust mass density (anget+serendipitous) evolution with z	Pozzi, Gruppioni, Talia, Zamorani	Geneva, Faisst, Cassats, Capak, Narayanan, Toft, Le Févra	submitted
24	[CII] luminosity function and using forward modeling to compute selection function. Also include blind [CII] detections	Yan, Hemmaš	Capak, Le Fèvre	accepted
•	Molecular gas fractiens and molecular gas depletion smescales. Molecular gas masses derived from [28] dynamical masses, dust continuum a la Scoville Comparison of the quantities at z > 4 with main sequence galaxies at z=1-3 Comparison of these quantities to other galaxy properties (redshift, SFR, stellar mass, distance from main sequence)	Dessages* General Toft=DAWN	Faisst, Scoville, Pavest, Ginoff, Sirard, Le Edvire, Narayasan, Pozzi, Riechers, Silverman	accepted
G7	Lya properties of some specific [Cit] detections	Morseli, Gassata	Faisst, Bethermin,	kicking-of

			Capak, Narayanan, Toft	
C8	Molecular line modeling with photo-ionization models (need tollow up for more FIR lines). Use measured offsets of FIR, [CI], UV.	Vallini	Gruppioni, Pozzi, Cassata, Pavesi, Faisst, Narayanan	5 1 1 1
C10	Comparison of Lya escape fraction and [CII] line. How does (Lya) escape fraction vary with gas fraction (from [CII]? [no significant correlations found. Not very promising.]	Toft + Student at DAWN	Faisst	ł
C12	MCRPHOLOGY IL Sizes from UV plane Measure [CII] and continuum sizes from UV plane on brightest sources	Fujimoto	Bethermin, Faisst, Girard, Narayanan, Geneva, Le Févre, Tasca	•
C14	(CI) and FIR continuum amission from cosmological SPH simulations (spatial) -> Olsen et al. (2017)	Toft/Narayanan/Oise N	Faisst Also Vallni-Ferrara ?	• •
C15	Constraints on the dark matter content of high-z galaxies - Based on rotation curves for the brightest C+ emitters - From dynamical mass estimates (using vel. dispersion and halfight radius), back out the amount of dark matter required with consideration of stellar mass based on deep HSC imaging and gasidust estimates from the ALMA continuum	Silverman, Malolino	Faisst	¢
C16	Measuring outflow velocities (*mass outflow rates and energetics) through rest-frame UV absorption lines epectroecopy. We use the [CII] as a tracer of systemic redshift, align & stack the rest-frame UV spectra in bins of SFR, Mstar etc, and measure the velocity offsets of blueshifted absorptions (SiI, CII SiIV etc)	Ginotfi + Geneva + Paolo, Faiset	Talia	0(0

	Feb	3, 2021
Accepted		
accepted]
]
Status		
accepted		
accepted		
	_	

F	eb 3, 2021
l interested, but able to work on s on a short escale	
ely abandoned.	
cepted	
planned, but rently on hold	
going	
going ost of analysis ne)	

Inclusive Spectroscopic Selection ALPINE galaxies are selected from various spectroscopic programs to mitigate (as well as possible) spectroscopic selection biases.

Spectroscopy and Selection of ALPINE Galaxies Selection Survey Number COSMOS field (105 galaxies) Faisst et al. (2020) Keck/DEIMOS⁴ 84 narrowband $(z \sim 4.5)^{\circ}$ 6 $z \sim 5.5$ sample narrowband $(z \sim 5.7)^d$ 23 LBG (color)⁶ 41 pure photo-z $4.5 \,\mu m$ excess X-ray (Chandra) with Ly α emission 66 weak $Ly\alpha$ emission or absorption 18 VUDS 21 photo-z + LBG21 [narrowband ($z \sim 4.5$) [narrowband ($z \sim 5.7$) [LBG (color) [4.5 μ m excess with $Ly\alpha$ emission weak $Ly\alpha$ emission or absorption 5 ECDFS field (13 galaxies) 5.75.85.9VLT GOODS-S 5.611 primarily LBG (color) 11 total with Ly α emission 6 total without $Ly\alpha$ emission 5 HST/GRAPES 2

1

2

2

0

Grism (no a priori selection)

weak Ly α emission or absorption

with $Ly\alpha$ emission

Typical Galaxies at High Redshifts ALPINE galaxies are main-sequence galaxies living during the early growth phase at z = 4 - 6.

Formation of stars per volume

C⁺ emission at 158µm

LeFèvre et al. (2020) + M. Ginolfi

C⁺ emission at 158µm

LeFèvre et al. (2020) + M. Ginolfi

What does ALPINE tell us about high-z (post-reionization) galaxies?

What Is ALPINE Telling Us About Early Galaxies? Fraction of Major Mergers Time since Big Bang [Gyr] 13 9 6 5 1.51.2

Michael Romano's talk

Romano et al. (2021)

Fraction of Major Mergers

- Michael Romano's talk
- Structure of high-z galaxies
- 5 morpho-kinematic classes
- <u>See Gareth Jones' talk!</u>

What Is ALPINE Telling Us About Early Galaxies?

Le Fèvre et al. (2020)

PECULIAR MORPHOLOGY OF THE HIGH-REDSHIFT RADIO GALAXIES 3C 13 AND 3C 256 IN SUBARCSECOND SEEING

O. LE FÈVRE¹

Canada-France-Hawaii Telescope Corporation; and Meudon Observatory

F. HAMMER,¹ L. NOTTALE, AND A. MAZURE¹

Meudon Observatory

AND

C. CHRISTIAN¹ Canada-France-Hawaii Telescope Corporation and University of Hawaii Received 1987 June 19; accepted 1987 October 8

ABSTRACT

We report high spatial resolution imaging of two radio galaxies from the 3C catalog, 3C 13 and 3C 256 with redshifts of 1.351 and 1.819, respectively. The excellent image quality obtained at CFHT, 0".6 FWHM for 3C 13 and 0".7 for 3C 256 in the R band, over long integration times, allowed us to resolve these distant galaxies into complex structures. As suggested by Le Fèvre and colleagues in 1987 for another source, the

Le Fèvre et al. (1987)

"The excellent image quality obtained at CFHT, [...] allowed us to resolve these distant galaxies into complex structures."

FIG. 2.—3C 256 (z = 1.819): 1 hr exposure in R band at CFHT prime focus. FWHM is 0".7. The multiple component structure is aligned on a common axis. North is up, and the image is 10.5×10.5 arcsec².

PECULIAR MORPHOLOGY OF THE HIGH-REDSHIFT RADIO GALAXIES 3C 13 AND 3C 256 IN SUBARCSECOND SEEING

O. LE $Fèvre^1$

Canada-France-Hawaii Telescope Corporation; and Meudon Observatory

F. HAMMER,¹ L. NOTTALE, AND A. MAZURE¹

Meudon Observatory

AND

C. CHRISTIAN¹ Canada-France-Hawaii Telescope Corporation and University of Hawaii Received 1987 June 19; accepted 1987 October 8

ABSTRACT

We report high spatial resolution imaging of two radio galaxies from the 3C catalog, 3C 13 and 3C 256 with redshifts of 1.351 and 1.819, respectively. The excellent image quality obtained at CFHT, 0".6 FWHM for 3C 13 and 0".7 for 3C 256 in the R band, over long integration times, allowed us to resolve these distant galaxies into complex structures. As suggested by Le Fèvre and colleagues in 1987 for another source, the

Le Fèvre et al. (1987)

"The excellent image quality obtained at CFHT, [...] allowed us to resolve these distant galaxies into complex structures."

FIG. 2.—3C 256 (z = 1.819): 1 hr exposure in R band at CFHT prime focus. FWHM is 0".7. The multiple component structure is aligned on a common axis. North is up, and the image is 10.5×10.5 arcsec².

A&A 643, A1 (2020) https://doi.org/10.1051/0004-6361/201936965 © O. Le Fèvre et al. 2020

Survey strategy, observations, and sample properties of 118 star-forming galaxies at 4 < z < 6

O. Le Fèvre¹, M. Béthermin¹, A. Faisst², G. C. Jones^{15,16}, P. Capak^{2,27,28}, P. Cassata^{4,5}, J. D. Silverman^{6,32}, D. Schaerer^{7,8}, L. Yan²³, R. Amorin^{12,13}, S. Bardelli¹¹, M. Boquien¹⁴, A. Cimatti^{9,10}, M. Dessauges-Zavadsky⁷,

nal-to-noise ratio (S/N) threshold larger than 3.5 corresponding to a 95% purity (40% detection rate for S/N > 5). inspection of the [CII] data cubes together with the large wealth of ancillary data, we find a surprisingly wide range of galaxy types, including are mergers, 20% extended and dispersion-dominated, 13% compact, and 11% rotating discs, with the remaining 16% too faint to be

Le Fèvre et al. (2020)

"Based on a visual inspection of the [CII] data cubes together with the large wealth of ancillary data, we find a surprisingly wide range of galaxy types [...]

The SFR vs. C⁺ relation and C⁺ deficit

- No deviation found with respect to local SFR-C+ relation
- No deficit in C⁺ found
- C+ is a reasonable tracer of the SFR at z=4-6 for relatively massive galaxies

What Is ALPINE Telling Us About Early Galaxies?

Schaerer et al. (2021); Romano et al. (2022)

What Is ALPINE Telling Us About Early Galaxies? The SFR vs. C⁺ relation and C⁺ deficit

- No deviation found with respect to local SFR-C+ relation
- No deficit in C⁺ found
- C+ is a reasonable tracer of SFR at z=4-6 for relatively massive galaxies
- C+ overdensity compared to z = 0 LF??

Are high-z galaxies really dust poor?

- a lower dust content
- can be quite dust-rich

Are high-z galaxies really dust poor?

- Generally high-z galaxies do have a lower dust content
- Most massive galaxies, however can be quite dust-rich
- Significant amount of dust obscured ("UV/optical-dark") galaxies!

54.8s

10h01m55.0s54.9s

Total dust mass and age can constrain evolutionary stage

- Statistically, ALPINE galaxies are likely progenitors of local elliptical galaxies (spheroids) as opposed to local disk galaxies.
- Consistent with high fraction of merging galaxies? Proto-
 - Spheroidal (collapse and burst)

How do high-z galaxies interact with their environment?

- the surrounding IGM
- star formation (not AGN)

How do high-z galaxies interact with their environment?

- Outflows and distribution of gas in merging systems enrich the surrounding IGM
- Outflows likely dominated by star formation (not AGN)
- C+ halos (likely common) produced by outflows, heating, gigantic disks, minor satellites (?)

Constraints on ISM properties of high-z galaxies

- 10 galaxies have $[OII]_{\lambda 3727}$ and C⁺ measured: **ONLY** sample at z > 4.5!!

Hα

(Lemaux et al. 2020; Shen et al. 2021).

- Ha from Spitzer COORS (Faisst et al. 2019)
- Results:
- ➡ log(U) < -2.5 (consistent¹ log(L_[0II]/ with z=2-3 galaxies)
- $log(n_e) = 2.5-3$ (slightly higher than z=2-3galaxies at same SFR)

• $[OII]_{\lambda 3727}$ from MOSFIRE (1) and Subaru NB (9) observations of C3VO cluster

More results in following presentations!

Gareth Jones

Kinematic analysis

Mirka Dessauges-Zavadsky

Main sequence and SFR density

Molecular gas mass and depletion

Paolo Cassata

Velocity offsets between Lya and C⁺

What About Higher Redshifts?

REBELS survey (Bouwens et al. 2021) is ALPINE continuation to z > 7

What About Higher Redshifts?

REBELS survey (Bouwens et al. 2021) is ALPINE continuation to z > 7

 Evolution of C⁺ halo size from z = 7 to z = 4

> (r_e) [kpc] Radius Effective

What About Higher Redshifts?

REBELS survey (Bouwens et al. 2021) is ALPINE continuation to z > 7

- Evolution of C⁺ halo size 120 from z = 7 to z = 4100 2 40
- Evolution of dust temperature from z = 780 [K] to z = 4 (see Laura T_{d} <u>Sommovigo's talk</u>)

40

20

0

Conclusions

- ALPINE, providing the first true multi-wavelength study, has significantly
- ALPINE builds the necessary baseline sample that can be further expanded (by more galaxies and observations) and serves as comparison sample for other redshifts.

improved our understanding of how galaxies evolve in a post-reionization time.

Conclusions

- ALPINE, providing the first true multi-wavelength study, has significantly
- ALPINE builds the necessary baseline sample that can be further expanded (by more galaxies and observations) and serves as comparison sample for other redshifts.
- ALPINE is part of COSMOS-Web, a 208 hour JWST NIRCam + MIRI survey. Some galaxies will also be observed by NIRSpec.

improved our understanding of how galaxies evolve in a post-reionization time.

Conclusions

- ALPINE, providing the first true multi-wavelength study, has significantly
- ALPINE builds the necessary baseline sample that can be further expanded (by more galaxies and observations) and serves as comparison sample for other redshifts.
- ALPINE is part of COSMOS-Web, a 208 hour JWST NIRCam + MIRI survey. Some galaxies will also be observed by NIRSpec.

improved our understanding of how galaxies evolve in a post-reionization time.

SPITZER IRAC 8.0 μ

WEBB MIRI $7.7\,\mu$

