Characteristics of High Redshift Lensed Star Forming Galaxies, as seen by MUSE/VLT and HST

Ilias Goovaerts (PhD student at the LAM) and Tran Thi Thai (PhD student at the LAM and the Department of Astrophysics, Vietnam)

R. Pello, P. Tuan-Anh, J. Richard, A. Claeyssens, Emile Carinos and the MUSE Collaboration

The Group

- Ilias Goovaerts (PhD at the LAM)
- Lyman-α Emitter (LAE) and Lyman Break Galaxy (LBG) Interrelation

Muse Lensing Group: (PI: J. Richard) R. Pello, P. Tuan-Anh, A. Claeyssens, MUSE Collaboration

- Tran Thi Thai (Cotuition between the LAM and Department of Astrophysics, Vietnam)
- Lyman-*α* Emitter luminosity function (LAE LF)
- <u>Poster:</u> Studying the Luminosity Function of Lyman Alpha emitters selected behind 17 lensing clusters from MUSE/VLT observations

Ilias Goovaerts

Muse Collaboration

MUSE Lensing clusters – The LLAMAS sample

- 17 lensing clusters observed with MUSE/VLT IFU spectroscopy. (Claeyssens et al. 2022)
- 603 LAEs with secure spectroscopic redshifts: 2.9 < z < 6.7.
- MUSE Datacubes, Catalogs, Lensing Models publicly available for this sample work ongoing to refine and add clusters.
- We can access faint populations that are out of reach for blank field surveys.

Exposure time (hrs)

Cluster	R.A.	Dec.	$z_{\rm cl}$	MUSE depth	N fields	N LAEs	Effective volume surveyed
	(J2000)	(J2000)		[hours]			Mpc ³
Abell 2744	00:14:20.702	-30:24:00.63	0.308	3.5 - 7	4	142 (121)	1969
Abell 370	02:39:53.122	-01:34:56.14	0.375	1.5 - 8.5	4	98 (42)	2080
MACS J0257.6-2209	02:57:41.070	-22:09:17.70	0.322	8	1	48 (25)	566
MACS J0329.6-0211	03:29:41.568	-02:11:46.41	0.450	2.5	1	8 (17)	627
MACS J0416.1-2403 N	04:16:09.144	-24:04:02.95	0.397	17	1	71 (46)	597
MACS J0416.1-2403 S	04:16:09.144	-24:04:02.95	0.397	11-15	1	56 (34)	535
MACS J0451.9+0006	04:51:54.647	+00:06:18.21	0.430	8	1	45 (21)	473
MACS J0520.7-1328	05:20:42.046	-13:28:47.58	0.336	8	1	33 (19)	606
1E 0657–56 (Bullet)	06:58:38.126	-55:57:25.87	0.296	2	1	14 (11)	743
MACS J0940.9+0744	09:40:53.698	+07:44:25.31	0.335	8	1	58 (49)	1171
MACS J1206.2-0847	12:06:12.149	-08:48:03.37	0.438	4-9	3	82 (50)	1777
RXJ1347.5-1145	13:47:30.617	-11:45:09.51	0.451	2-3	4	124 (72)	1247
SMACS J2031.8-4036	20:31:53.256	-40:37:30.79	0.331	10	1	44 (21)	563
SMACS J2131.1-4019	21:31:04.831	-40:19:20.92	0.442	7	1	30 (16)	512
Abell 2390	21:53:36.823	+17:41:43.59	0.228	2	1	14 (8)	534
MACS J2214.9-1359	22:14:57.292	-14:00:12.91	0.502	7	1	33 (17)	471
Abell S1063	22:48:43.975	-44:31:51.16	0.348	3.9	2	35 (20)	1227
Abell 2667	23:52:28.400	-26:05:08.00	0.233	2	1	24 (14)	423
Total					30	959 (603)	16117

From Claeyssens et al. 2021

Ilias GoovaertsMuse CollaborationFrom Galaxies to Cosmology with Deep Spectroscopic Surveys, Marseille, 2022

Ilias Goovaerts

Muse Collaboration

From Galaxies to Cosmology with Deep Spectroscopic Surveys, Marseille, 2022

LAE Luminosity Function

- LAE Luminosity Function (LF) (2.9 < z < 6.7) behind 17 lensing clusters
- 603 (high confidence) LAEs.
- We investigate the faint end of the LF: hunting the contributors to reionisation.
- Improved statistics at $log(L_{Ly\alpha}) < 40.5$ with respect to initial study (de la Vieuville et al. 2019).

Results – LAE Luminosity Function

Ilias Goovaerts

Muse Collaboration

From Galaxies to Cosmology with Deep Spectroscopic Surveys, Marseille, 2022

LAE/LBG intersection

- Start this analysis with the HFF and CLASH clusters (7 in total).
- We complement MUSE spectroscopy with the deepest HST photometry we have available today on the HFF and CLASH fields.
- We use all available HST bands, K_s from VLT and Spitzer/IRAC (3.6 and 4.5 μ m) Shipley et al. 2018 for the HFF, Postman et al. 2012 for the CLASH.
- We select LBGs using pure photometric redshifts 2.9 < z < 6.7 -Hyperz package and the integrated probability function.

Ilias Goovaerts

Muse Collaboration

LBG Selection - HFF

Group	A2744	A370	AS1063	M0416N	M0416S
LAE only	24	8	6	14	5
LBG only	<548	<515	<398	<189	<184
LAE+LBG	49	18	4	12	15
LAE+continuum	48	16	11	20	13

• LAE incompleteness have been calculated – used in the LF, will be used here also.

- LBG multiple images
- LBG incompleteness/intersection incompleteness

Muse Collaboration From Galaxies to Cosmology with Deep Spectroscopic Surveys, Marseille, 2022

LAE+continuum

Muse Collaboration From Galaxies to Cosmology with Deep Spectroscopic Surveys, Marseille, 2022 ¹¹

LBG only

Muse Collaboration From Galaxies to Cosmology with Deep Spectroscopic Surveys, Marseille, 2022 ¹²

LAE only

UV Magnitude Distribution

Ilias Goovaerts Muse Collaboration From Galaxies to Cosmology with Deep Spectroscopic Surveys, Marseille, 2022 ¹⁴

Upcoming challenges

- 1. LBG multiple images
 - \checkmark Done for the LAEs
 - □ To do for the LBGs
- 2. Incompleteness treatment
 - \checkmark Done for the LAEs
 - □ Needs to be done for the LBGs
 - □ Needs to be done for the intersection...

3. Extend to the CLASH (short-term) and the full LLAMAS sample (longer-term).

□ Photometry is significantly worse in some of these fields.

Summary

- MUSE IFU observations
- LLAMAS sample: 600+ LAEs at redshifts between 2.9 and 6.7.
- We probe luminosities down to $log(L_{Ly\alpha}) \approx 39.5$, much deeper than in blank field studies.
- Faint end of the LF slope $\alpha = -1.87$, faint end turnover.

- Preliminary results on the LAE/LBG intersection.
- ~2000 LBGs in the HFF fields (2.9 < z < 6.7) using photometric redshifts.
- Photometry quality and selection effects are very important in LBG selection.

Photometry Comparison

LAE and Continuum Sample

Redshift Distribution

Muse Collboration

From Galaxies to Cosmology with Deep Spectroscopic Surveys, Marseille, 2022

Results – LAE Luminosity Function

Ilias Goovaerts

Muse Collaboration

From Galaxies to Cosmology with Deep Spectroscopic Surveys, Marseille, 2022 ²