

First Morpho-kinematic analysis of galaxies in dense environments in the MAGIC Survey

Valentina Abril-Melgarejo Space Telescope Science Institute

Benoît Epinat (LAM/CFH), Thierry Contini (IRAP), Wilfried Mercier (IRAP), Philippe Amram (LAM)

From Galaxies to Cosmology, Marseille. July 2022

Morphological evolution and Mass assembly processes

- Mass assembly mechanisms
- Star formation quenching processes
- Red sequence build-up

What is the impact of large-scale environment?

Red Fraction SDSS (Peng et al. 2010)

Delta Quenching of SF earlier in structures than galaxies in field. **Peng et al. 2010** \rightarrow Larger fractions of passive galaxies in dense environments

Contraction of the stellar distribution in dense environments Matharu et al. 2019 \rightarrow Cluster galaxies are smaller

Valentina Abril-Melgarejo

Previous IFU Surveys

N gal.	Z	$ m log(M_*) m M_{\odot}$	$\log(SFR)$ $M_{\odot} vr^{-1}$	Operating band
			0.7 - 2.6	J. H
84	0.9 - 1.8	9 - 10		SINFONI
739	0.6 - 2.7	9 - 11 4	-0.7 - 2.5	YJ, H, K
109	0.0 - 2.1	5 - 11.4		KMOS
795	0.6 - 1	10.0 ± 0.1	5 ± 1	J
100	0.0 1	10.0 ± 0.1		KMOS
				Optical–NIR
68	0.4 - 0.75	10.2 - 11.1	2	FLAMES
				GIRAFFE
80	1.3 - 2.6	10 - 11.1	1.14 - 2.9	$_{\rm J,H,K}$
				SINFONI
	N gal. 84 739 795 68 80	N gal. z 84 0.9 - 1.8 739 0.6 - 2.7 795 0.6 - 1 68 0.4 - 0.75 80 1.3 - 2.6	N gal.z $log(M_*)$ M_{\odot} 840.9 - 1.89 - 107390.6 - 2.79 - 11.47950.6 - 110.0 ± 0.1680.4 - 0.7510.2 - 11.1801.3 - 2.610 - 11.1	N gal.z $log(M_*)$ M_{\odot} $log(SFR)$ M_{\odot} yr ⁻¹ 84 $0.9 - 1.8$ $9 - 10$ $0.7 - 2.6$ 739 $0.6 - 2.7$ $9 - 11.4$ $-0.7 - 2.5$ 795 $0.6 - 1$ 10.0 ± 0.1 5 ± 1 68 $0.4 - 0.75$ $10.2 - 11.1$ 2 80 $1.3 - 2.6$ $10 - 11.1$ $1.14 - 2.9$

 \sim Mainly focused in massive SF galaxies (>10¹⁰ M_{sun})

Studies independent from the environment

Valentina Abril-Melgarejo

Scientific Goals

•What are the drivers of galaxy evolution and morphology transformation?

•Has environment a fundamental role in the Quenching of Cosmic SFR?

•When Quenching mechanisms get efficient? \rightarrow How they act on M_{bar} distribution and their fraction inside DMH?

→Previously in literature:
 Spectroscopic surveys + HR Im

Explore the parameter space and gain statistics

Morpho-kinematic approach

Statistics from MUSE (IFS)+HST

3D Spectroscopy \rightarrow MUSE, Multi Unit Spectroscopic Explorer

V. Abril Melgarejo/ ESO VLT 2018

Field of View \rightarrow 1 arcmin² at z ~ 0.7 \rightarrow 500 kpc Wavelength range \rightarrow 4800 – 9300 A Spatial Sampling \rightarrow 0.2"/spaxel Spectral Resolution \rightarrow 1770 – 3590 With AO and without AO observations

Valentina Abril-Melgarejo

The MUSE gAlaxy Groups In Cosmos (MAGIC). Epinat et al. in prep

Part of MUSE-GTO program to investigate the role of environment in galaxy evolution over the past 8 Gyrs (PI: T. Contini)

- •70 hours observing campaign
- •18 selected fields
- •16 massive groups at 0.25<z<0.85

•From gal. Group catalogs in **COSMOS** (Knobel et al. 2009, 2012) and in the **VIMOS VLT Deep Suvrvey** (VVDS, Cucciati et al. 2010)

Selection Criteria for Groups \rightarrow FoF algorithm Maximum linking length ΔL = 450 kpc Maximum velocity separation ΔV = 500 km s⁻¹ Small groups from 3-5 members Targeted groups \rightarrow At least 10 members

The MUSE gAlaxy Groups In Cosmos (MAGIC). Epinat et al. in prep

The Tully-Fisher Relation

- \rightarrow The TFR \rightarrow tight scaling relation: Luminosity vs. V_{rot} (Tully & Fisher 1977)
 - Important to study structure and evolution of disk-like galaxies TFR links M_{dyn} to M_{star} / M_{bar}
- →Several studies on TFR evol. with IFS data
 - IMAGES (Puech et al. 2008, 2010) at z~0.6, SINS (Cresci et al. 2009) at z~2, MASSIV (Vergani et al. 2012) at z~1.2
 - KMOS3D (Ubler+17)
 - **KROSS** (Tiley +16,19)
 - →Debate on evol. of the TFR zero point remains open BUT
 - → Comparisons affected by: measurement bias and different datasets, kinematic extraction and selection.
 - \rightarrow Selection using dynamical support V/ σ
 - → No conclusion on environment

The Tully-Fisher Relation

- \rightarrow The TFR \rightarrow tight scaling relation: Luminosity vs. V_{rot} (Tully & Fisher 1977)
 - Important to study structure and evolution of disk-like galaxies TFR links $\rm M_{dyn}\,$ to $\rm M_{star}$ / $\rm M_{bar}$
- →Several studies on TFR evol. with IFS data
 - IMAGES (Puech et al. 2008, 2010) at z~0.6, SINS (Cresci et al. 2009) at z~2, MASSIV (Vergani et al. 2012) at z~1.2
 - KMOS3D (Ubler+17)
 - **KROSS** (Tiley +16,19)
 - →Debate on evol. of the TFR zero point remains open BUT
 - → Comparisons affected by: measurement bias and different datasets, kinematic extraction and selection.
 - \rightarrow Selection using dynamical support V/ σ
 - → No conclusion on environment

Environmental study on the evolution of the TFR \rightarrow ORELSE (Pelliccia et al. 2019) \rightarrow long-slit study on clusters

 →94 SF galaxies in in clusters at z~0.9 compared to field galaxies in the HR COSMOS survey (Pellicia et al. 2017)
 → No evidence for evolution of the TFR

Morpho-kinematics analysis

MAGIC Survey observations

→Good seeing / AO

- →8 dense groups, Virial masses of $10^{13} 10^{14}$ Msun → Denser by at least x 25
- → ~300 galaxies in groups 178 in the MS

ID COSMOS	Seeing	Number of galaxies	$M_{\rm vir}$
Group	"	$(\mathrm{all}/\mathrm{MS})$	$10^{13}~{ m M}_{\odot}$
CGr28	0.654	10/9	7.1
CGr30	0.700	44/33	6.5
CGr32	0.596 - 0.624 - 0.722	106/50	81.4
CGr34	0.664	20/17	10.4
CGr79	0.658	19/15	11.2
CGr84	0.620 - 0.578	31/21	8.2
CGr84b	0.620 - 0.578	35/25	8.8
CGr114	0.740	12/8	3.5
Median	0.656		8.5
Total		277 / 178	

→Morphology on high resolution F814W ACS/HST images:

- Bulge /disk decomposition with GALFIT
- Size of disk

.Projection parameters of disk (for kinematics)

- Centre
- Disk inclination
- Position Angle of major axis

Abril-Melgarejo et al. 2021

Kinematic Extraction

Extraction of kinematic maps

CGr28-85

Valentina Abril-Melgarejo

kinematic Sample Selection

Abril-Melgarejo et al. 2021

.On the main sequence of star-forming galaxies .Need to be resolved \rightarrow Re/FWHM≥ 0.5 .Need sufficient SNR over the disk \rightarrow SNR>40

\rightarrow 77 galaxies in the group kinematic sample (0.5 < z < 0.8)

Selection:

Most of dispersion dominated system are removed
Size effect: for galaxies not resolved: σ = rotation?

kinematic Modeling

[OII] kinematic analysis 2D Maps extraction (CAMEL) 2D Rotating disk kinematics models (Epinat et al. 2010) →Including Beam smearing

 ${\boldsymbol{\rightarrow}} \to V_{\text{max}}, \, \sigma_{\text{gas}}, \, \text{dynamical masses}, \, \text{PA}_{\text{K}}$

Valentina Abril-Melgarejo

Stellar and Baryon Mass Fractions

Mass gas estimates

Kennicutt-Schmidt law using [OII] fluxHypothesis: constant SFR surface density within R22

 $M_g = (4.756 \pm 1.944) \times 10^{-23} \times (\pi R 22^2)^{2/7} (4\pi D_L^2 F_{[OII]})^{5/7}$

Stellar and baryonic mass fraction:

.M_{*} / M_{dyn}
.M_{bar} / M_{dyn}
.< 50%
.Stellar fraction increases with mass
.Less clear for baryons

Main Results on the TFR with MAGIC sample

Offset of the zero-point of the various TFR compared to various samples at z~0.9: .3D samples: **KMOS3D** & **KROSS** (mainly field galaxies) .2D sample: **ORELSE** (mainly cluster galaxies)

Typical offset of ~ 0.3 dex

Contraction
$$\Delta(\log V) \sim 0.04 \text{ dex}$$

V traces mass within R_{22} : $M_{dyn}(r) = \frac{rV(r)^2}{G}$
Contraction of distribution by ~0.05 dex:
 $\Delta(\log V) = -0.5\Delta(\log R_{22}) \sim 0.025 \text{ dex}$
 \rightarrow Explains part of the offset

Total offset in the TFR could be due to a combination of both effects

- **Quenching** $\Delta(\log M_*) \sim 0.2 \text{ dex}$
- V traces DMH mass
- ightarrow Less stars/baryons at a given DMH mass
- Decrease of SF by ~0.3 dex (Tomczak et al. 2019)

$$\rightarrow$$
 Quenching timescale

$$\Delta T = \frac{\Delta(\log M_*)}{\alpha \times \Delta(\log \text{SFR})} = 1 - 3 \text{ Gyr}$$

Valentina Abril-Melgarejo

Conclusions

Analysis on the intermediate redshift sample on dense groups

- Original sample selection \rightarrow no need for a posteriori selection
- Impact of selection and methodology on TFR

→Clear offset of zero point, even with ORELSE (cluster galaxies)

- 1. Quenching of SF
 - •Linked to quenching mechanisms?
 - \rightarrow E.g. starvation, gravitational interactions, mergers, ram pressure stripping
- 2. Contraction of baryons

→Need for a proper comparison sample

Same data quality and ancillary data (Mass, SFRs, etc.), same sample selection and similar kinematics extraction

 \rightarrow Stay tuned for Wilfried Mercier's talk on more details and results with the MAGIC Survey.