From galaxies to cosmology with deep spectroscopic surveys A tribute to Olivier Le Fèvre. 4-8 July 2022

4-8 juil. 2022 Marseille (France)

2022 -

General Introduction Mark Dickinson, NSF's NOIRLab

From galaxies to cosmology with deep spectroscopic surveys A tribute to Olivier Le Fèvre. 4-8 July 2022

4-8 juil. 2022 Marseille (France)

2022 -

A spectrum is worth a thousand images. A thousand spectra are worth...

From two dimensions...

Seldner et al. 1977 (using Shane & Wirtanen 1967)

1061 galaxies

Seldner et al. 1977 (using Shane & Wirtanen 1967)

4 July 2022 - Mark Dickinson

Today's talks: Sylvain de la Torre + all

Cosmology from large redshift surveys

Martínez et al. 2009

Peacock et al. 2001

Eisenstein et al. 2005

Tuesday's talks (and more)

Galaxy properties

Mass – Metallicity

ISM excitation

Tremonti et al. 2004

Kauffmann et al. 2003

Even imaging surveys are redshift surveys...

Tuesday's and Thursday's talks: Kartaltepe, Tresse, ...

Galaxy properties at high redshifts

Star-forming "Main Sequence"

Galaxy dynamics and ISM properties

Stellar Mass

Mapping the IGM in 3D

Figure: Bill Keel

Newman et al. 2020

Thursday's talks: Pentericci, Cassata, ...

Surveying the redshift frontier

Pentericci+2018, FORS2, 5.5 < z < 7.2

Jung+2020, MOSFIRE, 7.1 < z < 7.9

The Landscape of Redshift Surveys

The Landscape of Redshift Surveys

DARK ENERGY SPECTROSCOPIC

U.S. Department of Energy Office of Science

DESI at the 4m Mayall Telescope, Kitt Peak National Observatory, NSF's NOIRLab

Figures: Abareshi et al., AJ, submitted, arXiv:2205.10939v1

| Main Survey Coverage: DARK

U.S. Department of Energy Office of Science

DARK survey: ~5 visits to each patch of sky to achieve full depth.

The DARK survey has already carried out ~9500 deg² with at least one visit.

Roughly **1300 deg² already complete** with multiple visits.

Animation credit: A. Raichoor / LBNL

Slide credit: DESI Speakers Board

DARK ENERGY SPECTROSCOPIC INSTRUMENT DESI Year 1 Data

U.S. Department of Energy Office of Science

Figures: DESI Speakers Board

2:1 2022-06-17 05:49:11 KPNO Mayall 4m ÷.118

C.P. Total

1

Z:4 2022-06-17 03:29:34 KPNO Mayall 4m

2022-06-15 17:44:59 KPNO Mayali 4m Z:16 2022-06-16 18:37:17 KPNO Mayall 4m

DARK ENERGY SPECTROSCOPIC INSTRUMENT BAO, early results

U.S. Department of Energy Office of Science

Bright Galaxy Sample, 0.1 < z < 0.5

Luminous Red Galaxies, 0.4 < z < 1.1

Ly- α forest, z > 2.1, 3D autocorrelation

Figures: DESI Speakers Board

Figure: J. Guy, LBNL, DESI

The future is massively multiplexed...

The future is massively multiplexed...

Tuesday: Richard Ellis, John Silverman ...

The future is massively multiplexed...

Telescope / Instrument	Telescope diameter (m)	Collecting area (m ²)	FoV (deg²)	Multiplex	Α x Ω vs. SDSS	A x N vs. SDSS	Target density (arcmin ⁻²)
Mayall 4m / DESI	4.00	9.5	7.08	5000	2.6	20.2	0.20
Subaru / PFS	8.20	53.0	1.25	2400	2.5	54.0	0.53
MegaMapper	6.50	28.0	7.06	20000	7.6	237.8	0.79
Keck / FOBOS	10.00	76.0	0.09	1800	0.3	58.1	5.73
MSE	11.25	80.8	1.50	3249	4.7	111.5	0.60
ESO SpecTel	11.40	87.9	4.91	15000	16.6	559.8	0.85

The future is Extremely Large...

88). R368

From Galaxies to Cosmology with Deep Spectroscopic Surveys

Thursday: Lidia Tasca, ELT MOSAIC

GMT / GMACS

 $\lambda = 0.32 - 1.0 \mu m$, red & blue arms R = 1000 - 6000 FoV = 6'x7' Natural Seeing or Ground-Layer AO 4 July 2022 - Mark Dickinson $\lambda = 0.31 - 1.0 \mu m$, red & blue arms R = 1500, 3500, 5000 FoV = 3'x8'

GMT / MANIFEST fiber positioner^v

From Galaxies to Cosmology with Deep Spectroscopic Surveys

Facility Fiber Positioner for GMT spectrographs

TMT / WFOS

Access 20' diameter GMT FoV + IFU configurations

Gemini GIRMOS A Pathfinder for the ELTs

Gemini-North AO + GIRMOS Multi-Object AO IFU spectroscopy of up to 4 objects within 2' AO-corrected patrol field Simultaneous imaging of the AO-corrected field PI: Suresh Sivanandam (Dunlap Inst. / Univ. of Toronto)

SINS/zC-SINF AO IFU Survey, Förster-Schreiber+2018 36 galaxies, 450 hours with VLT

The future is in space...

Figure credit: ArianeGroup

4 July 2022 - Mark Dickinson

Thursday: Andy Bunker's talk

And the future is almost here!

Euclid + Roman slitless spectroscopy

4 F146 Y Н 3 Area (m²) Prism Red grism Blue grism Grism Eff ſ 10000 12500 15000 17500 20000 0.5 1.5 2.0 2.5 1.0 Wavelength λ [Å]

Telescope aperture: 2.4m Field of View (NISP): 0.53 deg² Blue grism: 0.92–1.25 μ m Red grism: 1.25–1.85 μ m, 1.354 nm/pix \rightarrow R \approx 550 (2 pix) @ 1.5 μ m

Telescope aperture: 2.4 m Field of View (WFI): 0.28 deg² Prism: 0.75–1.80 μ m, 2-9 nm/pix \rightarrow 80 < R < 180 Grism: 1.00–1.93 μ m, 1.1 nm/pix \rightarrow R \approx 680 (2 pix) @ 1.5 μ m

Wavelength (microns)

Roman

Euclid

5000

VIS (r+i+z)

7500

DREaM: Simulated Roman Ultradeep Legacy Field

N. Drakos et al. 2022, Roman EXPO Science Investigation Team

- DREaM assigns galaxy properties to dark matter haloes) (M*, SFR, t, Z, A_v, etc.)
- FSPS (Conroy+2009) stellar population synthesis + nebular emission (Byler+2017)
- 1 deg²: 5x10⁶ galaxies, m < 30, 0 < z < 13

DREaM: Simulated Roman Ultradeep Legacy Field

N. Drakos et al. 2022, Roman EXPO Science Investigation Team

- DREaM assigns galaxy properties to dark matter haloes) (M*, SFR, t, Z, A_v, etc.)
- FSPS (Conroy+2009) stellar population
 synthesis + nebular emission
 (Byler+2017)
- 1 deg²: 5x10⁶ galaxies, m < 30, 0 < z < 13

Roman Ultradeep Spectroscopy (100h)

Simplified simulation using nominal Roman WFI performance

Spectral Sensitivities: Line: 2-4 x 10⁻¹⁸ erg s⁻¹ cm⁻² Contin. (prism): AB \approx 25.8 – 26.6

4 July 2022 - Mark Dickinson

4 July 2022 - Mark Dickinson

From Galaxies to Cosmology with Deep Spectroscopic Surveys

Astrophysics Telescope for Large Area Spectroscopy (ATLAS) Galaxy Evolution & Cosmology from Spectroscopy of 200M Galaxies out to z=7

Conceived as a NASA Probe Mission concept Heritage from ESA Euclid precursor 'SPACE'

- 1.5m aperture telescope with 0.4 deg² FoV
- R = 1000 slit spectroscopy over 1 to 4 μm
 - Hα + [NII] at 0.5 < z < 5
 - $H\beta$ + [OIII] at 1 < z < 7
 - [OII] at 1.7 < z < 9.7
- 6,000 spectra simultaneously
- Slit selectors: Digital Micromirror Devices Now being rescaled to ~1m NASA Explorer-class

PI: Yun Wang (Caltech/IPAC) Instrument Lead: Massimo Robberto (STScI & JHU) Wang et al. 2019, PASA, 36, e015, arXiv:1802.01539 https://atlas-probe.ipac.caltech.edu/

ATLAS Science Objectives

- Map the cosmic web to shed light on the physics of galaxy evolution
- Trace large scale structure densely to illuminate the nature of dark energy
- Probe the Milky Way's dust-shrouded regions to the far side of the Galaxy
- Explore Kuiper Belt Objects in the outer Solar System

From Galaxies to Cosmology with Deep Spectroscopic Surveys (Figures by Alvaro Orsi)

Summary

- 40+ years of multi-object spectroscopy have revolutionized astronomy
 - Cosmology
 - Large Scale Structure
 - Galaxy properties and evolution
- The next 10-20 years: The revolution continues
 - Massively multiplexed, dedicated spectroscopic observatories
 - New infrared spectroscopic instruments and technologies
 - MOS on Extremely Large Telescopes
 - Space-based MOS from JWST, Euclid, Roman and beyond
- It's not just the technology, it's the people who use it