The Fundamental Metallicity Relation up to $z \sim 0.7$

Investigating different methods of comparison of different samples

F. Pistis, A. Pollo, and VIPERS Team July 5, 2022

Contents

Introduction

What is the Mass Metallicity Relation (MZR)?

What is the Fundamental Metallicity Relation (FMR)?

Surveys

Different approaches to the comparison of the FMR from different surveys

Direct cross-matching: FMR projections

Indirect cross-matching by physical properties

Indirect cross-matching by distance to star-forming main sequence (MS)

Conclusions

Introduction

What is the Mass Metallicity Relation (MZR)?

- Relation between stellar mass (M_{*}) & metallicity (Z) of galaxies
- Reflects the fundamental role of galaxy mass in regulating galactic chemical evolution

Source: Curti et al. (2020)

What is the origin of the Mass Metallicity Relation (MZR)?

- Shaped by two mechanisms (Lian et al. 2018a,b)
 - The metal enrichment suppressed at early times in low-M_{*} galaxies
 - The metal enrichment must stop at $z \sim 1.5$ in high-M_{*} galaxies
- Need of a time-dependent mechanism to regulate metal enrichment
 - Time-dependent star formation efficiency (SFE, Lilly et al. 2013)
 - Time-dependent metal outflow or time-dependent initial mass function (IMF, Lian et al. 2018a,b)

Source: Curti et al. (2020)

What is the Fundamental Metallicity Relation (FMR)? The relation between MZR and SFR

- Relation between stellar mass (M_{*}), SFR, & metallicity (Z) of galaxies (Mannucci et al. 2010; Curti et al. 2020; Kumari et al. 2021)
- No evolution observed up to $z \sim 2.5$ (Mannucci et al. 2010)
- · Effects of gas flows
 - Inflow \longrightarrow dilution + ignition of SFR
 - Outflow \longrightarrow starvation + removal of metals

Source: Curti et al. (2020)

Surveys

Surveys

• Sloan Digital Sky Survey (SDSS)

Source: https://www.sdss.org/science/

Alam et al. (2015)

 VIMOS Public Extragalactic Redshift Survey (VIPERS)

Source: http://vipers.inaf.it/

Guzzo & VIPERS Team (2013)

MZR: from $z \sim 0$ to $z \sim 1$

- SDSS (0.027 < z < 0.3): \sim 150 000 star-forming galaxies
- VIPERS (0.5 < z < 0.8): ~ 5000 star-forming galaxies, with a full set of emission lines
- VVDS (0.89 < z < 1.24): ~ 40 star-forming galaxies (Pérez-Montero et al. 2009)
 - · In agreement within uncertainties
 - General trend of metallicity with cosmic time rising at a given M_{\star}

Source: Pistis et al. (2022a), in prep.

Different approaches to the comparison of the FMR from different surveys

- MZR is known to change with *z* because galaxies increase metallicity with time at all stellar masses
- 3D FMR (M_{\star} -SFR-Z) is expected/measured to not evolve
- How to compare different samples at different z in a quantitative way?

Different approaches to the comparison of the FMR from different surveys

- Infer the FMR from its projections (direct cross-matching on physical properties — p-control sample — and their scatter around main sequence, MS — galaxy type, t-control sample)
- Non-parametric framework (specific SFR, sSFR, normalized to the median sSFR of SDSS sample, Salim et al. 2014, 2015): "indirect" cross-matching on physical properties
- Non-parametric framework (sSFR normalized to the MS sSFR, Pistis et al. 2022a, in prep.): "indirect" cross-matching according to the distance from the star-forming main sequence (MS) — galaxy type

- For each VIPERS galaxy we select all SDSS galaxies in a radius of 0.1 dex in $\log M_{\star}$ and $\log SFR$
- We measure the distance in $\log M_{\star}$ and $\log SFR$
- We keep a maximum of three closest galaxies to each VIPERS galaxy

- For each VIPERS galaxy, we found the correspondent SFR at low-z from the MS
- We simulate the scatter around the MS with adding $N(\mu, \sigma)$
- + $\mu = 0, \sigma$ is the SFR standard deviation of VIPERS in a 0.1 dex mass bin
- We proceed as for p-control sample

Direct cross-matching: properties' distributions

Source: Pistis et al. (2022a), in prep.

Direct cross-matching — FMR projections I

- SDSS control samples have a small shift at low stellar mass with respect to the SDSS full sample
- Metallicity versus SFR: p-control sample higher but parallel to the VIPERS sample; t-control sample shows a positive correlation
- Cross-matching does not result in any difference in metallicity versus the combination of M_{*} and SFR planes with respect to the full SDSS sample

Source: Pistis et al. (2022a), in prep.

Direct cross-matching — FMR projections II

- P-control sample does not show the same projections than VIPERS data —> Evolution of the FMR(?)
- MZR and metallicity versus SFR are the most evolving projections
- The relations between metallicity and combination of M_{*} and SFR evolve the least

Source: Pistis et al. (2022a), in prep.

Direct cross-matching — FMR direct comparison

- Metallicity difference between SDSS-based samples and VIPERS increasing with M_{\star}
- No metallicity differences with/without cross-matching \longrightarrow No evolution of the FMR (?)

Indirect cross-matching by physical properties

- Metallicity versus sSFR plane bias independent (introduced by data selection or observation, Pistis et al. 2022b, accepted)
- Normalization of the sSFR on the median low-z sSFR allows to compare galaxies with the same physical properties
- Difference between samples increasing with M_{*} in agreement with Salim et al. (2015) at z ~ 2.3

Source: Pistis et al. (2022a), in prep.

Indirect cross-matching by distance to star-forming main sequence (MS)

- Normalization of the sSFR on the sSFR predicted from the MS
- Bigger difference at small M_{*} than in indirect cross-matching on physical properties
- Allows us to study the metallicity dilution/enrichment below $(\delta \log \text{sSFR} < 0)$ and above $(\delta \log \text{sSFR} > 0)$ MS

Source: Pistis et al. (2022a), in prep.

Indirect cross-matching: dilution/starvation scenario I

- Slope from the fit of the metallicity versus $\delta \log sSFR$ in each mass bin
- $\delta \log \text{sSFR} < 0$: decreasing slope \longrightarrow dry-mergers in VIPERS
- $\delta \log sSFR > 0$: small slope for VIPERS \longrightarrow metallicity of the infalling gas close to the ISM

Source: Pistis et al. (2022a), in prep.

Indirect cross-matching: dilution/starvation scenario II

- Hypothesis of pristine gas infalling is not always true
- Dark matter halo bias → reduction of the differences in the slope at different redshift at high-M_{*}

Source: Pistis et al. (2022a), in prep.

Conclusions

- + FMR & its projections comparison between $z\sim$ 0 (SDSS) and $z\sim$ 0.7 (VIPERS)
- FMR & its projections evolution

- Parametric method direct cross-matching on physical properties and distance from main sequence
 - Difficult to infer information on FMR from its projections
 - · Evolution of the MZR and metallicity versus SFR
 - No evolution of the metallicity versus combinations of M_{\star} and SFR
 - FMR does not evolve
 - Metallicity difference between SDSS-based samples and VIPERS increasing with M_{\star}

- Non-parametric method indirect property cross-matching
 - Bias independent (introduced by data selection or observation, Pistis et al. 2022b, accepted)
 - sSFR normalized by median value at low redshift: compare galaxies with the same physical properties without the step of cross-matching
 - FMR does not evolve
 - Metallicity difference between SDSS and VIPERS samples increasing with ${\rm M}_{\star}$

- Non-parametric method indirect galaxy type cross-matching
 - Bias independent (ntroduced by data selection or observation, Pistis et al. 2022b, accepted)
 - sSFR normalized by the MS value: compare galaxies with the same distance from the MS without the step of cross-matching
 - Higher metallicity difference at low-M_{\star}

- 1. Analogies
 - Direct and indirect cross-matching on physical properties \longrightarrow metallicity difference increasing with M_{\star}
- 2. Dissimilarities
 - Flattening at low-M_{*} IN VIPERS (similar to VVDS, Pérez-Montero et al. 2009) not observed in the indirect method → need to study directly MZR or FMR
 - Indirect cross-matching on galaxy type does not lead to the same conclusions than other methods

Conclusions: why indirect methods are better?

- 1. Pros of indirect methods of comparison
 - Simpler than studying the projections
 - · Straightforwardly compare galaxies with the same properties or type
 - · Independent on biases introduced by data selection or observations
- 2. Cons of direct methods of comparison
 - · Direct method needs to take into account biases
 - + FMR projections evolve \longrightarrow difficult to infer information on the whole FMR

Thank you for your attention!

What is the origin of the Mass Metallicity Relation (MZR)?

- Gas inflow \longrightarrow the star formation
- Evolution of stellar population \longrightarrow production of metals
- Evolution of stellar population → energy injection to the ISM
- Energy injection to the ISM \longrightarrow gas outflow

Source: Maiolino & Mannucci (2019)

Direct cross-matching — galaxy type: according to the distance from the galaxy main sequences

- MS: $\log SFR(M_{\star}, z)$
- $\log \text{SFR}_{MS}^{\text{SDSS}}(M_{\star}) = \alpha \log M_{\star} + \beta$
- $\log \text{SFR}_{\text{MS}}^{\text{VIPERS}}(z, M_{\star}) = \alpha(z) \log M_{\star} + \beta(z)$

Source: Pistis et al. (2022a), in prep.