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Background
* The goal of modern cosmology is to understand the 

physics that governs our Universe on the largest scales 

* Figure out the constituents of the Universe

The game we play… 
1) We start with Einstein’s GR 
2) Plug in a homogeneous/isotropic metric 
3) Plug in energy/matter components 
4) Obtain evolution equations for: 

- Expansion of the Universe 
- Growth of density perturbations



Background

* What causes cosmic acceleration? 
- Vacuum energy or Scalar field(s)? 
- Or something more strange*?!  
  * (if that’s not strange enough) 

* What is Dark Matter? 
- Is it Self-interacting? 
- Is it Decaying? 

Each of the above possibilities could effect 
- Universe expansion 
- Clustering of matter 



Background
We can now map large 
volumes of the Universe in 
3D using galaxies as 
tracers of the underlying 
matter potential  

But then what do we do 
with all these galaxy 
positions?

SDSS



⇠(r) = h�(x)�(x+ r)ix

Count galaxies in cells and compute power spectra, P(k)

SDSS

Background

Or count pairs and compute correlation functions:
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Convolutional Neural Networks
A convolutional neural network for image classification



Deep Learning the Large Scale Structure

500 COmoving Lagrangian 
Acceleration(COLA) 
simulations

512Mpc box with 512^3 dark 
matter particles

Output at z=0

First work showing that a 
connection can be built from 
the density field directly to the 
parameters

Ravanbakhsh et al. (2017), Mathuriya et al. (2018) 
showed that convolutional neural networks can be 
trained to predict cosmological parameters from the 
visual shape of the large scale structure, i.e. the 
filaments, clusters and voids of the cosmic density 
field.



Deep Learning the Large Scale Structure

arXiv:1908.10590 
Pan, Liu, Forero-Romero, Sabiu, Li, Miao, (led by) Xiao-Dong Li  

0.16 < ΩM < 0.46
0.4 < σ8 < 1.1

In a grid of 31x15 
parameter combinations

We run COLA DM simulations with 
with 128^3 particles, in a 256 Mpc 
box, using timesteps 40 output at z=0. 


We grid the data onto 2Mpc voxels.


The input of the whole network is a 
32^3-voxel (i.e. (64Mpc)3) subcube of 
the density field. 




Deep Learning the Large Scale Structure
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Figure 3. The architecture of our neural network. A cube having 323 voxels is fed to the network. The three convolution
layers have 32, 64, 128 filters, respectively. Beside each convolution layer, a batch normalization layer is added before it to
normalize the distribution (so that to enhance the stability), and a pooling layer is placed after it to decrease the size of the
output. After that, we got 128 ⇥ 23 voxels containing the extracted features. They are then converted to a 1-d vector by the
flatten layer, and passed to three dense layers with 1028, 24, 2 neurons, to output the final predictions of ⌦m and �8.

Results of each convolutional layer, are also passed to
a “pooling” layer to decrease the sample size. Ravan-
bakhsh et al. (2017) suggests using averaging pooling for
LSS data, so we adopt it as one of our default options
of the network. However we found that for our architec-
ture max-polling works even better. Thus, for a di↵ernt
architecture, the best options or hyper parameters can
be also di↵erent.

3.3. Fully Connected Layers

Fully connected layers are also names as “dense lay-
ers”. Outputs of the final polling, after flattened, are
passed to three dense layers. They have 1024, 256 and
2 neurons, respectively. They can connect the features
extracted by the CNN to the values of ⌦m and �8.
To suppress over-fitting (the CNN is so sophisticated

that there are always sample-dependent features ex-
tracted), a 20% dropout layer was placed before the
dense layers, to abondon features not very relatived to
cosmology.

3.4. Discussion

One disadvantage of the neural network is that, it
functions like a black box, and we never know what

really happens within it. Although a precise parame-
ter estimation is achieved, our understanding about the
LSS is not much improved. In any case, we still have
to use the network, as long as it is e↵ective in compre-
hensive data mining. The cosmic LSS is so complicated
that “only machines can fully understand and charac-
terize it”.
Although the first layer conduct convolution on

(6 h
�1Mpc)3 sub-cubes, it does not necessarily mean

that we are only using structures on such small scales
to constrain cosmologies. In the two following convo-
lutions, small-scale features are grouped to form more
advanced features on larger scales. To to exact, we are
using structures on 6� 64 h

�1Mpc.
Our architecture is largely di↵erent from what

adopted in Ravanbakhsh et al. (2017). We use a large
number of filters at the very beginning of convolution,
based on the belief that small scale structures contain
abundant information and should be convolved by many
filters to extract various features. Our architecture is
closer what adopted in Mathuriya et al. (2018).
While both Ravanbakhsh et al. (2017) and Mathuriya

et al. (2018) focused on one single architecture, we con-

Default Architecture 



Deep Learning the Large Scale Structure

Learning Curves 

Varying: 
- # of CNN filters 
- # of dense neurons 
- # of neuron layers 
- Optimiser  
- Pooling type 

Clear advantage in max-pooling over the average 
pooling 

Clear advantage of the sgd optimiser over the 
default ‘Adam’ optimiser. 

Adding an extra dense layer improves convergence
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Information Content:           vs

CLML (Cosmology with Large scale 
structure using Machine Learning) 

- Deep Learning Information Sumi Kim
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mvx, mvy, mvz,



Information Content:           vs

CLML (Cosmology with Large scale 
structure using Machine Learning) 
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- N-pcf

- Deep Learning 

*** Preliminary Result *** 

- Using 500 simulations of a single 
cosmology, we test the accuracy 
and precision of both methods


- CNN seems to be more 
constraining (higher information).


- CNN has a moderate bias 
compared to Npcf. However 
biases can be modelled and 
corrected.


- Exact N-pcf calculated using the 
GRAMSCI code 
https://arxiv.org/abs/1901.00296



Deep Learning the 21cm Intensity Field

z2

Future Radio surveys like SKA will map significant volumes of the 
high redshift Universe. 

What can we earn about the nature of Dark Matter? 



Cosmic Reionization History 

21cm Intensity Mapping



21cm Intensity Mapping



21cm Intensity Mapping
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Axion
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mx=10-22 eV Std CDMmx=10-20 eV

Varying Axion Mass

21cm Intensity Mapping

10-22 eV
10-21 eV

10-20 eV

★The linear power spectrum has a 
suppression of power at progressively 
lower k for decreasing axion masses


★This has a significant effect on the 
collapse fraction of gas


★Delays the onset of reionization 
compared to Std CDM 



Redshift Evolution of the neutral fraction

mx=10-22 eV Std CDM



Redshift Evolution of the neutral fraction

★We can look at the redshift when the 
universe if half ionised as a function of 
axion mass



Towards Realistic Images:  
Noise and Telescope Resolution

21cm Intensity Mapping

Noiseless, Ideal simulation Radio telescopes have an angular 
resolution , where B is the 
baseline which we adopt as 500m for 
the core antennas of the SKA1-Low 
design, and since , the 
resolution acquires a mild redshift 
dependence. 

Δθ ∼ λ
B

λ = λ21(1 + z)

Ndish =is the number of antenna, MHz 
is the frequency bandwidth,  is the 
fraction fo sky observed, h is the 
integration time, and  the 
system temperature is composed of 

 and 

Δν = 1
fsky = 0.02

tint = 1,000
Tsys = Trx + Tgal

Trx = 0.1Tgal + 40K Tgal = 25 ( ν
408MHz )

−2.75



T 
(mK)

21cm Intensity Mapping

Data structure

64 x 64 x 128 cells of 21cm Brightness temperature 
Spanning 2 spatial dimensions and 1 redshift/frequency

128 Mpc

128 Mpc



3D Convolutional Neural 
Network

21cm Intensity Mapping



3D Convolutional Neural 
Network

We trained two CNN networks: 

1) on the ideal noiseless sims

2) on the realistic SKA1 noise sims

 

We now probe those two trained 
networks.


We create 200 mock observations 
each for the standard DM and an 
ultra light axion dark matter of fixed 
mass logM=-21


We analyses each in the ideal no 
noise case and for realistic SKA1-
Low noise 

21cm Intensity Mapping

Axion Model Standard CDM



Breaking Degeneracy between 
Axion Mass and Astrophysical 

parameters 

21cm Intensity Mapping

Low efficiency 

Std CDM

High Tvir

Std CDM

Fid astro params

Axion



Results & Conclusions
We made realistic SKA-1 LOW images of the 
21cm signal in an axion DM scenario.


We applied a machine learning approach 
using convolutional neural networks and 
found that the trained network could 
constrain the axion particle mass


Astrophysical Parameters can mimic the 
axion signature - but not exactly 


Marginalising over a wide range of nuance 
parameters we were able to constrain the 
axion mass to ~20% using a modest SKA1-
Low design while assuming a fiducial Planck 
2015 cosmology. 


The axion can be detected with SKA at if the 
axion is MX < 1.86 ×10−20eV although this 
can decrease to MX < 5.25 ×10−21eV if we 
relax our assumptions


Axion Model Standard CDM



Take your own message home 
but here are some suggestions…

Spectroscopic surveys have provided us with a exquisite 
measurements of the expansion history and growth of 
structure in the universe allowing us to constrain models… 


Deep Learning may allow us to extract more cosmological 
information than standard techniques


Adopting a fully forward modelling approach to cosmology 
(required by most ML) may shed light on some important issues, 
e.g. parameter tensions, error/covariance under-estimation, etc   
 
 
 
Thank You


