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From Galaxies to Cosmology

• The Ultimate goal of our field in a nutshell is to take a distribution 
of observed galaxies and to learn important things about the 
physics of the Universe (derive constraints on cosmological 
parameters).


• The direct field-level analysis approach tries to achieve it by 
running lots of high-fidelity simulations and directly comparing the 
galaxy distributions in the simulations to data.


• This is in principle the most complete solution but is currently not 
viable because the required computational costs are still 
prohibitive.
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Figure 1. The figure shows the cold dark matter density fields for the target N-body simulations (top), the input/benchmark COLA simulations
(middle) and the predictions of our model (bottom), at a scale of 1000 Mpc h�1 (left column), 250 Mpc h�1 (middle column) and 50 Mpc h�1

(right column). Each figure is a zoomed-in image of the white box in the figure on its left.

important summary statistics used in cosmology since for
Gaussian density fields (like the one our Universe resembles
on large, linear scales), it fully characterizes the statistical
properties of the field.

In the top-left panel of Fig. 2, we show with a solid black
line the average power spectra from 10 Quijote simulations
of the test set. The dotted blue line shows the average power
spectrum from the corresponding COLA simulations, while
the green dot-dashed line outputs the average power spec-
trum of Zel’dovich-evolved simulations. The solid yellow
and dashed red lines show the average power spectrum from

NN(ZA) and NECOLA, respectively. As can be seen, the
worst model is the one that only employs the Zel’dovich ap-
proximation, followed by the COLA simulation.

In order to better visualize the differences between the out-
put of the N-body simulation and the networks, we plot in the
middle-left panel of Fig. 2 the transfer function, defined as

T (k) =

s
Ppred(k)

Ptarget(k)
, (2)

where Ppred(k) and Ptarget(k) are the average matter power
spectra of the predictions and the target density fields re-

Simulation of a Universe

From Kaushal et al. 2020, 2111.02441

Planck Collaboration: Cosmological parameters

modelling of the baryonic e↵ects on the matter power spectrum
at small scales, modifying the halo mass-concentration relation
and the shape of the halo density profile. In this context, how-
ever, we marginalize over this parameter in order to reduce the
residual sensitivity of our results on the nonlinear modelling in
modified gravity theories; marginalizing over B reduces the con-
straining power coming from nonlinear scales, where the cor-
rection recipe used by HMcode may not correctly reproduce the
perturbation evolution for all the models included in our param-
eterization.

Throughout this section we will adopt the metric given by
the line element

ds2 = a2
h
�(1 + 2 )d⌧2 + (1 � 2�)dx2

i
, (48)

with the speed of light c set to 1. The functions �(⌧, x) and
 (⌧, x) are the gauge-invariant gravitational potentials, which
are very nearly equal at late times in ⇤CDM. For the back-
ground parameterization we use the standard CAMB code, while
for the perturbation parameterization we use the publicly avail-
able code MGCAMB33 (Zhao et al. 2009; Hojjati et al. 2011) inte-
grated into the latest version of CosmoMC. For the e↵ective field
theory (EFT) models of Sect. 7.4.3 we use EFTCAMB34 (Hu et al.
2014; Raveri et al. 2014).

7.4.1. Background parameterization: w0, wa

If the DE is a generic dynamical fluid, its equation of state pa-
rameter w ⌘ p/⇢ will in general be a function of time. Here p
and ⇢ are the spatially-averaged (background) DE pressure and
density.

To test a time-varying equation of state we adopt the func-
tional form

w(a) = w0 + (1 � a)wa , (49)

where w0 and wa are assumed to be constants. In ⇤CDM, w0 =
�1 and wa = 0. We use the parameterized post-Friedmann (PPF)
model of Fang et al. (2008) to explore expansion histories where
w crosses �1. The PPF equations are modelled on the pertur-
bations of quintessence dark energy, i.e., they correspond to a
fluid with vanishing anisotropic stress and a rest-frame speed
of sound approximately equal to the speed of light. Because of
the high sound speed, dark-energy density perturbations are sup-
pressed inside the horizon and are irrelevant compared to the
matter perturbations, except on the very largest scales. While
this is the standard procedure adopted in the literature, we should
emphasize that a single minimally-coupled canonical scalar field
(quintessence) cannot cross w = �1 (Vikman 2005). Such a
crossing could happen in models with two scalar fields (one of
which would have to be a phantom field with the opposite sign
of the kinetic term); in such models the perturbations remain
close to the quintessence case (see e.g., Kunz & Sapone 2006).
Alternatively, the phantom “barrier” can be crossed with a sound
speed that vanishes in the phantom domain (Creminelli et al.
2009) or in models with additional terms in the action, such as
in kinetic-gravity-braiding (De↵ayet et al. 2010), or with non-
minimal couplings (Amendola 2000; Pettorino & Baccigalupi
2008). These and other modified gravity models, typically also
change the behaviour of the perturbations.

33Available at http://www.sfu.ca/˜aha25/MGCAMB.html

(February 2014 version, but updated to correctly output the power
spectrum of the Weyl potential).

34Available at http://eftcamb.org/ (version 2.0).
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Fig. 30. Marginalized posterior distributions of the (w0,wa)
parameters for various data combinations. The tightest con-
straints come from the combination Planck TT,TE,EE+lowE
+lensing+SNe+BAO and are compatible with ⇤CDM. Using
Planck TT,TE,EE+lowE+lensing alone is considerably less con-
straining and allows for an area in parameter space that cor-
responds to large values of the Hubble constant (as already
discussed in Planck Collaboration XIII 2016 and PDE15). The
dashed lines indicate the point corresponding to the ⇤CDM
model. The parametric equation of state given by Eq. (49) stays
out of the phantom regime (i.e., has w � �1) at all times only in
the (upper-right) unshaded region.

Marginalized contours of the posterior distributions for w0
and wa are shown in Fig. 30. Note that CMB lensing has only
a small e↵ect on the constraints from Planck alone (see the pa-
rameter grid tables in the PLA). Using Planck data alone, a wide
volume of dynamical dark-energy parameter space is allowed,
with contours cut o↵ by our priors (�3 < w0 < 1, �5 < wa < 5,
and 0.4 < h < 1; note that Fig. 30 does not show the com-
plete prior range). However, most of the allowed region of pa-
rameter space corresponds to phantom models with very high
values of H0 (as discussed in PDE15); such models are inconsis-
tent with the late-time evolution constrained by SNe and BAO
data. This is illustrated in Fig. 30 which also shows constraints if
we add BAO/RSD+WL and BAO+SNe to the Planck TT,TE,EE
+lowE+lensing likelihood. The addition of external data sets
narrows the constraints towards the ⇤CDM values of w0 = �1,
wa = 0. The tightest constraints are found for the data combi-
nation Planck TT,TE,EE+lowE+lensing+BAO+SNe; the di↵er-
ence in �2 between the best-fit DE and ⇤CDM models for this
data combination is only ��2 = �1.4 (which is not significant
given the two additional parameters). Numerical constraints for
these data combinations, as well as �2 di↵erences, are presented
in Table 6. It is also apparent that for the simple w0, wa param-
eterization of evolving DE, Planck combined with external data
sets does not allow significantly lower values of S 8 or higher
values of H0 compared to the base-⇤CDM cosmology.

Fixing the evolution parameter wa = 0, we obtain the tight
constraint

w0 = �1.028 ± 0.031 (68 %, Planck TT,TE,EE+lowE
+lensing+SNe+BAO), (50)
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Cosmological constraints 

From Planck 2018, 1807.06209



Standard analysis

• Compute a 2pt statistics of the galaxies (configuration space - 
correlation function, Fourier space - power spectrum)


• BAO feature is sensitive to the Alcock-Paczyński effect. Can be used to 
derive measurements of distance.


• RSD feature is sensitive to the growth of structure. Can be used to 
constrain the properties of gravity.


• The measurements are well-understood. The theory can be computed 
both with analytical tools and simulations.


• Robust with respect to observational systematics and small-scale 
physics.


• Can we do more?

BAO/RSD

Cosmology from eBOSS 
standard analysis



Higher-Order Statistics

• The hierarchy of the n-point correlation functions contains all of the non-stochastic information 
about the field (although see Caron 2011, APJ, 738, 86, for the problems with convergence)


• They are difficult and time-consuming to compute (although see Philcox & Slepian, 2022, 
2106.10278, for new developments)


• 3pt functions are the most natural step beyond the standard analysis. 


• In principle, a 5D function of three triangle side-lengths and two orientation angles.


• They can now be computed very efficiently (see e.g. https://github.com/ladosamushia/
Bispectrum)


• On large scales can be modeled both theoretically and with simulations, and may contain most of 
the leftover information from the 2pt.

3pt - Bispectrum

3pt function - the probability of finding three galaxies 

in a specific configuration

https://github.com/ladosamushia/Bispectrum
https://github.com/ladosamushia/Bispectrum
https://github.com/ladosamushia/Bispectrum
https://github.com/ladosamushia/Bispectrum
https://github.com/ladosamushia/Bispectrum
https://github.com/ladosamushia/Bispectrum


Beyond Two-Point

• In principle, one does not have to measure the hierarchy of the 
n-point functions.


• We can pick any statistics of the galaxy field that is easy to 
measure both in the simulations and in the data.


• Something that we believe can be made free from systematics 
(observational, simulation-based).


• These measurements are under the hood some kind of effective 
integrated combination of n-point functions, but we don’t really 
need to know what they are.


• E.g. k-nearest neighbor cumulative distribution functions.

Integrated statistics

Peaked CDF at z=0 (solid) and z=0.5 (dotted)

Cosmological constraints from kNN-CDF

From Banerjee & Abel, 2020, 2007.13342



Small-Scale Clustering

• Clustering on Small Scales in very highly nonlinear


• It is reasonable to expect that the higher-order statistics could be very useful 
in this regime


• The main problem with the small-scale clustering is that it is very sensitive to 
the physics of galaxy formation which is difficult to account for in simulations


• The Halo Occupation Distribution: Populate halos (that we have in 
simulations) with galaxies (that we do not have in simulations) based on the 
local properties of the halo and its neighborhood (mass, local density)


• Many groups working on the hydrodynamical simulations have reported 
noticeable disagreement with N-body simulations at tens of Megaparsec 
scales!  The HOD approach may have non-resolvable problems at those scales.


• Multiple groups are working on cosmology fits to the small-scale clustering 

BOSS small scale 2pt function

5% growth rate measurement from

BOSS small scale 2pt function


From Lange et al. 2020, 2101.12261

HOD and cosmology



HOD constraints from projected 3pt correlation function 

• The project was led by a current KSU student Hanyu Zhang


• On small scales, where the clustering is highly nonlinear, can higher-
order statistics enhance constraints on galaxy-halo connection?


• HOD - put galaxies in halos based on probabilistic prescriptions 
about position and velocity (usually based on halo mass and other 
local parameters).


• Constrain HOD parameters by comparing projected 2pt/3pt 
functions measured from the Abacus simulations with the 
measurements.

Preliminaries
4 H. Zhang et al.

Figure 2. Top panel shows the expected number of galaxies hosted by a halo
as a function of halo mass for the fiducial HOD parameters. The blue, orange
and green colors are for the LRG, ELG, and QSO respectively. The solid, dash
and dash dotted line represents the expected number of all (cen+sat), central
and satellite galaxies. The bottom panel shows the probability distribution of
host halo mass for a galaxy of each tracer. Solid line shows the host halo mass
distribution for all, normalized as the probability per log(" ) , dash and dash
dotted line shows central and satellite host halo mass distribution respectively.

defined as a probability of finding a triplet of galaxies to be separated
by r12, r23, and r31, also normalized to be zero for a uniform dis-
tribution. 2PCF of observed galaxies depends only on the along and
across the line-of-sight separations (with respect to the observer) of
galaxies instead of the full separation vector, b (2) (r) = b (2) (A? , c)
where A? is a distance perpendicular to the line-of-sight and c is
a distance along the line-of-sight. The 3PCF similarly depends on
three perpendicular separations and two relative distances along the
line of sight, b (3) (r12, r23, r31) = b (3) (A?12, A?23, A?31, c12, c23).
The variations in the line-of-sight separation in these correlation
functions depend on the velocities of the galaxies in addition to their
positions. To make HOD modeling easier projected correlation func-
tions are often used (Davis & Peebles 1983; Zheng 2004). They are
defined by

F (2)
p (Ap) =

c¢π
�c¢

3cb (2) (Ap, c) (7)

F (3)
p (Ap12, Ap23, Ap31) =

c¢π
�c¢

3c13c2b
(3) (Ap12, Ap23, Ap31, c1, c2) (8)

Figure 3. projected separation as a function of the triangular index.

The value of c¢ can extend to infinity but is usually chosen to be
of the order of a few tens of megaparsecs. This is done to smooth
over peculiar velocity e�ects. The correlation functions at large sep-
arations are usually measured with more uncertainty than the ones
on smaller scales. Truncating integration in eq. (7) and (8) at smaller
scales results in a cleaner measurements. These projected correla-
tion functions will depend on the velocities of the galaxies unless
c¢ ! 1, but as long as c¢ > 10⌘�1 Mpc this dependence is mild
and can be safely ignored. The projected correlation functions are
easier to model since one does not have to worry about modeling the
galaxy velocities.

We derive our main results using the value of c¢ = 100⌘�1 Mpc.
Our projected three-point correlation code runs much faster for larger
values of c¢; obtaining all of the main results for c¢ would be di�cult
for the computational resources we currently have at hand. One of the
main objective of our work is to show how big of an improvement
is achievable by adding three-point statistics to the standard HOD
fitting pipeline. To make a fair comparison, we also compute the
projected 2PCF using the value of c¢ = 100⌘�1 Mpc, even though
for the 2PCF we can a�ord lowering this value. We will later show
that lower values of c¢ are indeed more optimal, but the di�erence
is not big enough to a�ect any of our main conclusions (see App. B).

2.4 Measuring projected correlation functions

The 2PCF and 3PCF are usually measured by counting the number
of galaxy pairs and triplets for the data and for uniform distribution
in the same volume. They can be estimated from these pair and triplet
counts by

b (2) (Ap, c) =
⇡⇡ (Ap, c)
''(Ap, c)

� 1, (9)

b (3) (Ap12, Ap23, Ap31, c1, c2) =
⇡⇡⇡ (Ap12, Ap23, Ap31, c1, c2)
'''(Ap12, Ap23, Ap31, c1, c2)

� 1,

(10)

where ⇡⇡ is the number of pairs of galaxies separated by certain
radial and transverse distances, ⇡⇡⇡ is the number of triplets of
galaxies having a specific triangular configuration, '' and ''' are
the equivalent number of pairs and triplets from a uniform random
distribution. Additive factors of -1 normalize the correlations to be
zero when ⇡⇡ ⇠ '' and ⇡⇡⇡ ⇠ '''.

We compute the 2-point projected correlation functions by esti-
mating the 2PCF first and then integrating the estimated correlation

MNRAS 000, 1–15 (2022)
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et al. 1998; Seljak 2000; Peacock & Smith 2000; Scoccimarro et al.
2001; Berlind & Weinberg 2002; Cooray & Sheth 2002; Zheng et al.
2005, 2007, 2009). In the HOD framework galaxies are placed in
halos based on some probabilistic prescription that depends on the
properties of the host halo and its neighborhood. In the basic HOD
models, the probability of a halo to host a certain number of galaxies
only depends on its mass. In more complicated models it can also
depend on the local density of halos around the host and some features
of the history of the halo formation. Models of various complexity
have been o�ered for where exactly to place the galaxies inside the
halo and how to assign velocities to those galaxies.

An alternative approach to connect galaxies and halos is the sub-
halo abundance matching (SHAM) method (Kravtsov et al. 2004;
Vale & Ostriker 2004, 2006; Conroy et al. 2006; Behroozi et al.
2010; Guo et al. 2016). By assuming a monotonic relation between
certain halo properties and certain galaxy properties, a galaxy catalog
can be generated by matching the observed list of galaxies sorted by
galaxy property with a list of halos (and sub-halos) sorted by halo
property from simulations.

The HOD models have adjustable parameters that are tuned to
obtain galaxies as similar as possible to the observed sample. Tradi-
tionally, they are constrained by their 2-Point Correlation Function
(2PCF), which is the likelihood of finding a pair of galaxies with
a certain separation. The 2PCF for separations up to 20 ⌘�1Mpc is
usually used for this purpose (White et al. 2011; Richardson et al.
2012; Zhai et al. 2017; Alam et al. 2020; Avila et al. 2020; Rossi
et al. 2021; Zhou et al. 2021).

The 2PCF alone does not always have enough constraining power.
Many di�erent combinations of HOD parameters may result in a
2PCF that is consistent with the data within the measurement errors.
One way of improving the constraints is to also fit the observed 3-
Point Correlation Function (3PCF), which is a probability of finding
a triplet of galaxies with certain side lengths and orientation con-
cerning the line-of-sight with respect to an observer Ho�mann et al.
(2018, 2017). Kulkarni et al. (2007) studied the shape dependence
of reduced 3PCF and find that signal from reduced 3PCF could help
break the degeneracy between HOD parameters. Guo et al. (2015b)
explored the constraining power of redshift space 3PCF on HOD
parameters including the galaxy velocity bias. Yuan et al. (2018)
tested the potential extra constraining power of HOD parameters
from squeezed 3PCF (Yuan et al. 2017).

The top diagram on Fig. 1 schematically shows the steps required
to constrain the HOD parameters with a 2PCF or a 3PCF. For a set
of HOD parameters we populate mocks with galaxies according to
that model, we then measure the clustering statistics of interest, it is
compared with a similar measurement from the data, and the posterior
likelihood is assessed. This process is repeated many times for various
HOD parameter sets until the posterior likelihood is well explored.
The most time-consuming part of this algorithm is computing the
2PCF and the 3PCF. Computing the three-point correlation function
is especially time-consuming. The number of all possible triplets
scales as #3

gal, where #gal is the number of galaxies in the sample.
For a big sample, this requires looking at many millions of triangular
configurations. This computation needs to be performed at each point
in the MCMC chain. Recent works have proposed algorithms that
make it possible to compute certain combinations of 3PCF with #2

gal
complexity, but even with these algorithmic improvements, this step
remains the most computationally expensive piece in the pipeline.

The bottom diagram on Fig. 1 shows similar schematics for the
tabulation approach that has been first proposed in Zheng & Guo
(2016). In this approach, the 2PCF of some subsets of halos are pre-

Figure 1. The flow chart on top shows the conventional sequence of steps
leading to the HOD constraints. The bottom panel shows the same flow chart
for the tabulation approach.

computed separately before the MCMC stage. These measurements
are then combined with certain weights to statistically emulate var-
ious HOD population schemes. We describe tabulation method in
detail in Sec. 3. This approach saves a lot of computation time since
the most time-consuming part of the algorithm is performed only
once before launching the MCMC chain.

The tabulation method was initially developed for the 2PCF based
fits but it is trivially generalizable to the 3PCF. Many 3PCF based
results that we present in this paper would have required prohibitive
computation times with the traditional approach.

We test our method on the galaxies designed to emulate the Lumi-
nous Red Galaxies (LRGs), the Emission line galaxies (ELGs), and
the Quasars (QSOs) targeted by the Dark Energy Spectroscopic Sur-
vey (DESI Collaboration et al. 2016). We show the 3PCF constraints
on the HOD parameters dominate the 2PCF results for the DESI-like
LRGs. 3PCF has up to 70 percent improvement for a certain parame-
ter. For the ELG and the QSO galaxies, the improvements o�ered by
adding the 3PCF are more modest because of the lower typical host
halo mass and lower density of those tracers.

2 HOD ANALYSIS PIPELINE

2.1 HOD model

We use a HOD prescription in which the expectation value of galaxies
hosted by a dark matter halo only depends on the virial mass of
the halo. The expectation value is di�erent for central galaxies that
occupy the center of the halo, and satellites that are in virial motion
around the center.

For the LRGs we use

h#2
lrgi(") = �2

2

✓
1 + erf


log(") � log("cut)

f

� ◆
. (1)

h#B
lrgi(") = �B

✓
" � "0

"1

◆U
� (" � "0). (2)

The central probability increases with mass until it saturates to some
high mass value. The satellite probability is zero below some thresh-
old mass but increases as a power law above that mass.

In both formulas, " is the mass of the host halo. �2 , referred to
as a duty cycle in the literature, is a maximum probability for high
mass halos to host an LRG. "cut is the characteristic minimum mass
to host an LRG. f describes how steeply the probability increases
with halo mass around "cut. "0 is a mass threshold for the satellite

MNRAS 000, 1–15 (2022)

The average number of central/satellite galaxies 

in a halo.

Probability of a halo hosting a galaxy.

From Zhang et al. (2022, arXiv, 2203.17214)

A simple parameterization for the average

Number of central/satellite galaxies in a halo

containing adjustable HOD parameters

Hanyu Zhang



HOD constraints from projected 3pt correlation function 

• 3pt signal completely dominates the 2pt signal on the HOD parameters for 
the LRGs


• In other words, small changes in HOD result in large changes in the 3pt 
correlation (compared to the 2pt)


• This is not the case for the ELGs, where the contribution of the 3pt to the 
total constraining power is negligible.


• For this, accelerating triplet counts, binning pitfalls, and many other things 
see Zhang et al. 2022 (arXiv, 2203.17214)

DESI LRG-like sample from Abacus Simulations

High order HOD 11

Figure 9. Marginalized probability distribution of HOD parameters for DESI like LRG sample at I = 0.8. The results from the projected 2PCF and 3PCF are
shown in grey and red respectively. Blue shows the joint constraints from the two. The contours represent 68 and 95 percent confidence levels. 1D marginalized
distribution for each parameters are shown on top of each column. The dash line shows fiducial HOD parameter values.

log("cut) < 13.5. At this redshift, the top sensitivity is achieved at
the values of around log("cut) = 11.98. The sensitivity of F (2)

p at

the top is higher than the sensitivity of the F (3)
p(SV) . For ELGs, means

a lower sensitivity for 3PCF. The cumulative sensitivity at the peak
is also larger for the 2PCF compared to the 3PCF. Small scale triplets
do not show the same behavior as the LRG sample, remaining at low
sensitivity compare to small scale pairs.

These two plots show that both the redshift and the typical halo
mass are responsible for the di�erence between the LRG and the
ELG cases. The DESI LRGs happen to be in the halo mass range
where the 3PCF is more sensitive to the HOD parameters, while
ELGs are in the halos with the opposite property. In addition to
that, the sensitivity of 3PCF with respect to the halo mass seems to
be increasing rapidly with redshift. We believe this to be the main

reason why the improvement in our ELG constraints is modest while
the improvement in the LRG constraints is significant.

To test the pure redshift dependence of the constraining power of
the 3PCF we populate our ELG mock catalog at redshift 0.8 with
the same HOD parameters (tuned to the same number density, i.e.
ratio of �2 and �B remain unchanged). The results are presented on
the bottom panel of Fig. 12. We do not find a significant change in
the overall picture. The constraints are still dominated by the 2PCF
signal. We do notice however that the addition of the 3PCF makes the
likelihood contours more Gaussian and moves the most likely values
closer to the true values somewhat debiasing the results.

MNRAS 000, 1–15 (2022)
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Tracer LRG ELG QSO

Data F (2)
p F (3)

p(SV) F (2)
p + F (3)

p(SV) F (2)
p F (3)

p(SV) F (2)
p + F (3)

p(SV) F (2)
p F (3)

p(SV) F (2)
p + F (3)

p(SV)
log "cut 12.88 ± 0.199 12.73 ± 0.058 12.73 ± 0.059 11.83 ± 0.059 11.74 ± 0.125 11.83 ± 0.054 12.47 ± 0.060 12.43 ± 0.130 12.48 ± 0.058

f 0.315 ± 0.200 0.151 ± 0.103 0.162 ± 0.105 - - - - - -

log "1 13.93 ± 0.141 13.83 ± 0.053 13.82 ± 0.047 - - - 15.49 ± 0.766 15.53 ± 0.851 15.53 ± 0.755

log "0 11.73 ± 0.431 11.76 ± 0.407 11.78 ± 0.400 - - - - - -

U 1.279 ± 0.055 1.300 ± 0.040 1.301 ± 0.038 0.188 ± 0.097 0.268 ± 0.161 0.178 ± 0.095 - - -

�c - - - - - - - - -

�s - - - 0.015 ± 0.007 0.023 ± 0.016 0.015 ± 0.006 - - -

j2/d.o.f 2.5/(12 � 5) 36.5/(99 � 5) 34.9/(111�5) 0.9/(11 � 3) 57.5/(85 � 3) 56.7/(96 � 3) 4.3/(9 � 2) 39.4/(60 � 2) 42.6/(69 � 2)

Table 3. The results for the fits to HOD mock catalog of each tracers with three di�erent data set: 2PCF only (F (2)
p ), 3PCF only (F (3)

p(SV) ) and joint (F (2)
p +F (3)

p(SV) ).

We shows the mean ± 1f error for floating HOD parameters and j2/d.o.f for each fits.

Figure 8. 1-f band of LRG sample HOD. The light blue is the 68% CL
uncertainty from projected 2PCF only, the dark blue band is the 68% CL un-
certainty from joint fitting of projected 2PCF and simplified version projected
3PCF. Orange line is the fiducial HOD of LRG sample.

variance in the measurements expected from a cosmic volume of 1
cubic GigaParsecs. The actual DESI measurements will be obtained
from larger volumes, but since the errors on both the 2PCF and the
3PCF scale similarly with the volume the relative strength of the
constraints coming from the two will not change.

Fig. 8 shows 1 f uncertainty band of LRG sample HOD function
from 2PCF only fitting and 2PCF+3PCF joint fitting. The light blue
band shows 68% CL uncertainty from 2PCF only and the dark blue
band shows the band from 2PCF+3PCF joint fitting. The orange line
represents the fiducial HOD setting as the truth behind the mock we fit
to. It is clear to see joint fitting has a much narrow band compared to
the one using 2PCF only, especially for the range log("halo > 12.7),
indicate a much better constraint on satellite parameters from joint
fitting. Fiducial HOD lie in the 1f band shows a good recovery for
both cases.

Fig. 9 shows 1 and 2 f confidence level contours on the HOD
parameters for the LRG sample. These constraints are dominated by
the F (3)

p(SV) . The improvement is especially large for the parameters
log "cut, f, and log "1. The 3PCF constraints on those parameters
improve by 70, 49, and 62 percent respectively compared to the 2PCF
results. Combined fitting does not significantly di�er from the 3PCF
only results. Tab. 3 summarizes the marginalized statistic for each
fit. From the 1D distribution of each parameter on Fig. 9, all cases
successfully recover the fiducial HOD parameters.

Fig. 12 and 13 show 1 and 2 f confidence level contours for
the ELG at redshift 1.1 and 0.8 and QSO samples at redshift 1.4
respectively. We only free HOD parameters as shown in the contours
for these tracers. For the ELG and QSO, the constraints are dominated
by the projected 2PCF. Improvements o�ered by the addition of the
projected 3PCF are negligible.

There could be several reasons why the LRGs benefit greatly from
the addition of the 3PCF information while ELGs and QSOs do
not. One potential explanation is that the ELGs and QSOs are at
higher redshifts where matter underwent less nonlinear evolution
and the three-point signal is not as pronounced. Another potential
explanation is that galaxies of di�erent host halo masses are not
equally sensitive to the three-point information (see e.g. Kulkarni
et al. 2007).

To study the sensitivity of 2PCF and 3PCF to HOD parameters at
di�erent fiducial values we make a plot of the partial derivative of
F (2)

p and F (3)
p(SV) with respect to log("cut) normalized to the vari-

ance in the measurement at the fiducial value. Fig. 10 shows partial
derivatives of the 2PCF and the 3PCF with respect to log("cut)
with other parameters fixed to their fiducial value. To make the plot
more readable we separate it into two parts. The top panel covers
the range 12 < log("cut) < 13.5 while the bottom panel covers
13.5 < log("cut) < 14. High values of this derivative mean that the
measurement at that specific bin is highly sensitive to small changes
in "cut

The derivative of F (2)
p reaches highest value at log("cut) = 13.28

then drops back, while derivative of F (3)
p(SV) keeps increasing up

until 13.5 and only then drops down. The 3PCF displays a larger
cumulative sensitivity in the range log("cut) > 13.16, below that
range the 3PCF is not as sensitive to small changes in "cut compare
to F (2)

p .
Another thing apparent from the figure is that the small scale

triangles are more sensitive to log("cut) compared to their large-
scale counterparts (as evident by the local peaks in the right panel).
Triangles with all side lengths within the first 6 bins (< 1.41⌘�1Mpc)
peak at log("cut) = 13.5, while other triangles behave just like F (2)

p ,
drop back at log("cut) = 13.28. The di�erent behavior of small scale
triangles and small scale pairs leads to a higher sensitivity to HOD
parameter changes for small scale F (3)

pSV. The normalized derivative

of F (3)
p(SV) hit around 3000 while F (2)

p remains at 1500.

Fig. 11 shows the similar plots for ELG sample at I = 1.1. The
sensitivity in both the 2PCF and the 3PCF increases in the range of
11.3 < log("cut) < 11.98 and then drops in the range of 11.98 <
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Figure 12. Marginalized probability distribution of selected HOD parameters
for DESI like ELG sample at I = 1.1, 0.8. The results from the projected
2PCF and 3PCF are shown in grey and red respectively. Blue shows the joint
constraints from the two. The contours represent 68 and 95 percent confidence
levels. 1D marginalized distribution for each parameters are shown on top of
each column. The dash line shows fiducial HOD parameter values.
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Large-Scale Clustering

• A harmonic feature at very large scales (100 Mpc). Usually measured 
in the 2pt function.


• An effective spherical shell of over-density around each galaxy.


• Sensitive to distortions by the Alcock-Paczyński effect.


• Robust with respect to observational systematic effects.


• Robust with respect to small-scale galaxy physics.


• Should also be present in all the higher-order functions (correlated 
with the 2pt function).


• The constraining power of the data set scales as  , where V is the 
survey volume.

V

BAO in the 3pt function
8 D. W. Pearson & L. Samushia
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Figure 6. A comparison of the best fitting model and the average
measured power spectrum from mock galaxy catalogues. The tri-
angles show the mock average normalized by Psmooth,nw(k) defined
in equation (25), calculated with the best fitting values of the
ai , and B parameters, with a smooth cubic spline drawn through
the points. The open circles show the model of equation (27) with
the best fitting parameters normalized again by Psmooth,nw(k). The
two agree quite well, particularly with respect to the BAO peak
positions.
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where

α‖ =
Hfid(z)rfid

d

H(z)rd
, (37)

and

α⊥ =
DA(z)rfid

d

Dfid
A
(z)rd

, (38)

along with renormalizing the power spectrum by a factor
of 1/α2

⊥α‖ and due to equation (32), the bispectrum by the
same factor squared. From equations (1), (3), (37) and (38),
it can be seen that α‖ and α⊥ are related to α via

α3
= α2

⊥α‖ . (39)

Since the double-integral of equation (34) had to be
evaluated for each of our 691 k-triplets a very large num-
ber of times for the MCMC fitting procedure, it had to be
implemented in a numerically efficient manner. For this we
again turned to the GPU allowing us to calculate the double-
integral using a couple of levels of parallelism.

While it is possible to implement adaptive quadrature
on the GPU, the error estimation steps can introduce signifi-
cant overhead, and most algorithms rely on recursion which
is not well suited for GPUs (Thuerck et al. 2014). Given this,
we instead opted for the much easier to implement, fixed

Gaussian quadrature rules. Since Gaussian quadrature can
give an exact result for polynomials of degree 2n−1 or less, it
can allow very accurate numerical integration with relatively
few function evaluations. Given that the exact shape of the
above integrand can be difficult to predict, keeping n as large
as possible was desirable. Additionally, we again ran into the
fact that commodity GPUs achieve the highest throughput
for single precision floating point calculations. This made
the use of mixed-precision necessary, where many of the cal-
culations are done and variables stored as single precision
floats.

Extending Gaussian quadrature in two-dimensions was
done simply by setting up a two-dimensional grid such that
∫

f (x, y)dxdy !

n∑
i=1

n∑
j=1

wiwj f (xi, xj ), (40)

where xi are the points to evaluate your function determined
from your Gaussian quadrature rule, and wi are their asso-
ciated weights, both of which can be readily found in hand-
books. Combine the need for a two-dimensional grid, the
unknown shape of the integrand, the need to use mixed pre-
cision and the fact that the maximum number of threads
per GPU thread block is 1024, and n = 32 becomes a natu-
ral choice.

This allowed us to have one thread block per k-
triplet, where the integral was then approximated by a two-
dimensional 32 × 32-point Gaussian quadrature rule. Each
thread then computed one contribution to the integral, and
stored the result in block shared memory, with the final sum-
ming done in a two step reduction. To reduce the impact
of mixed precision, we stored all the calculations of equa-
tions (28) – (31) as single precision and the calculations of
equation (32) and (33) as double-precision. We then per-
form the final summing over the two-dimensional grid us-
ing those double-precision values and return the result as
double-precision. In our tests, a complete double-precision
calculation using the exact same algorithm has a relative
difference – e.g. (BMP−BDP)/BDP – from our mixed-precision
calculation of ∼10−7. Given the relatively large uncertainties
in the measured bispectrum, this loss of precision was well
worth ∼12× speed-up of the model evaluation.

For the fitting, we used six free parameters: the three
from equations (28) and (29), e.g. b1, linear bias, b2,
second-order bias, and f , the linear growth factor4 with
the two Alcock-Paczynski effect (Alcock & Paczynski 1979;
Kaiser 1987; Ballinger et al. 1996; Simpson & Peacock 2010;
Samushia et al. 2011) parameters, α‖ and α⊥, and the

Finger-of-God velocity dispersion parameter, σ2
v . Since our

model was only validated for the purposes of measuring the
BAO feature we did not attach any cosmologically meaning-
ful interpretation to the estimates of the parameters b1, b2,
f , or σ2

v . They were reasonably close to the linear model
expectations but were very likely strongly affected by sys-
tematics and we therefore do not quote them as useful cos-
mological constraints in this work.

Since we were only fitting to the spherically averaged

4 These parameters can only be measured up to some overall
power spectrum normalization, σ8, which we leave off for brevity.
In the text, when we use b1, b2, or f , we mean the combinations
b1σ8, b2σ8, or fσ8
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Figure 2. The measured bispectrum from the NGC, SGC, and N+SGC samples. The top panel shows the measurements with uncer-
tainties (

√
Ci i) using the same symbols (and colours for the online version) as in Figure 1. The bottom panel shows the data normalized

by the best fitting model. The fact that the normalized data are simply scattered about one shows that our model accounts for the
non-linearities in the data quite well.

covariance matrices, to decide what bispectrum wave num-
ber range to use in our fits. The inset square (cyan in the
online version) shows our selected region, which should in-
clude the equivalent of the first two ‘wiggles’ in the power
spectrum, helping to maximize the BAO constraining power,
while keeping the data vector reasonably sized. We note that
this two-dimensional plot is merely a convenient way of dis-
playing the BAO features in the bispectrum. Our actual con-
straints on the scale dilation parameter came from fitting to
the three dimensional data shown in Figure 2.

2.3 Covariance

We computed the sample covariance from the 2048
MultiDark-patchy mocks provided with DR12
(Kitaura et al. 2016; Rodŕıguez-Torres et al. 2016). This
was the main limit to the number of triangles we could
use for fitting the bispectrum data. First, we needed to
estimate the covariance matrix to enough accuracy that it
was not singular, if we were to invert it for our maximum
likelihood fitting. Additionally, the errors in our covariance
matrix carry through and affect our constraints on the
model parameters. To ensure that the matrix was invertible,
and that the uncertainties of its elements were kept low,
we limited ourselves to 0.04 ≤ k1, k2, k3 ≤ 0.168 for the
bispectrum measurements, and 0.008 ≤ k < 0.304 for the
power spectrum. In total, we had 691 bispectrum triangles
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Figure 3. The theoretical bispectrum normalized by the theo-
retical no-wiggle bispectrum, as a function of the length of two
wave-vectors, averaged over the length of the third wave-vector.
The inset box (cyan in the online version) encloses the scales used
in our analysis. The two dimensional sequence of local maxima
and minima are manifestations of the BAO feature. (See the on-
line article for a colour version of this plot.)
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BAO signal in the power spectrum

BAO signal in the integrated bispectrum

From Pearson & Samushia 2018



BAO from Galaxy Bispectrum
• The project was led by then a KSU Postdoc David Pearson (now a faculty at 

Pittsburgh State University)


• BAO signal is also present in the large-scale bispectrum as a 3D harmonic 
signal.


• By aligning the frequency of the harmonic signal in 3D we can constrain the 
distance redshift relationship.


• BOSS DR12 bispectrum results in ~ 20% improvement in the BAO parameters 
when combined with the power spectrum.


• 20% improvement is equivalent to the 40% effective increase in survey volume.


• Check out the methodology, systematics study, and how better covariances 
would improve things in Pearson & Samushia 2018, MNRAS, 478, 4500

BOSS DR12

10 D. W. Pearson & L. Samushia
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Figure 8. Histograms of the MCMC realizations from fitting to the bispectrum only, the power spectrum only, and the combination for
the N+SGC. The left hand panel shows the results from fitting to the average of the mocks. The right hand panel shows the results from
fitting to the measurments from the data. (See the online article for a colour version of this plot.)
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Figure 9. Histograms of the MCMC realizations from fitting to the bispectrum only, the power spectrum only, and the combination for
the NGC CMASS sample. The panels are the same as in Figure 8. (See the online article for a colour version of this plot.)

We show the histograms for α from all of our MCMC
fittings in Figures 8, 9, and 10 for the N+SGC, NGC, and
SGC samples, respectively. In all of the figures, the results
of fitting to the mocks is shown on the left, and the fitting to
the data on the right, and all histograms have been normal-
ized so that the area under the curves is equal to one. All
of the histograms are very close to Gaussian and encapsu-
late all regions of relatively high likelihood suggesting that
α parameter space was well explored by our MCMC chains.
These plots have not been broadened by the m1 factor of
equation (21).

The standard deviations listed in Table 1 have been
broadened by the m1 factors. The effect is quite appar-
ent in the full sample, N+SGC, combined power spectrum-
bispectrum fitting. Without carrying the covariance uncer-
tainty through, the standard deviation would be 0.0087, a
∼27 per cent tighter constraint than the power spectrum
alone, and a better constraint than the one from the power

spectrum of the reconstructed field. However, after multiply-
ing by the square root of m1, this become 0.0108 which still
represents a ∼10 per cent tighter constraint than our power
spectrum fitting.

To test how the constraints may improve given a more
precise estimation of the covariance matrix, we ran chains
fitting to the average of the mocks with the assumption that
our covariance was drawn from one-million mock catalogues,
which would make the effects both the covariance scaling
and m1 factor negligible. We did this for both the bispec-
trum and joint fitting, finding that the standard deviation
for α dropped to 0.011 and 0.007 from 0.014 and 0.010, re-
spectively. This indicates that given a less noisy estimate of
the covariance, from either more mock catalogues, a high-
precision theoretical calculation, or a hybrid approach like
the one used by Slepian et al. (2017a,b), could improve con-
straints on the distance scale by 30 per cent.

We note that we achieve a significantly better fit by

MNRAS 000, 1–13 (2017)

BAO parameter likelihood from the power 
spectrum (red) bispectrum (green), and the 
combined analysis (black) from Pearson & 
Samushia 2018.

David Pearson



Bispectrum Information Content

• Forecasting the potential performance of higher-order statistics is 
not easy.


• Leading order computations with Gaussian approximation predict a 
big gain (see. e.g. Gagrani & Samushia, 2017, MNRAS, 467, 928)


• Studies have shown that the nonlinear evolution and non-Gaussian 
effects become significant for the bispectrum on surprisingly large 
scales (Chan & Blot, 2017, PRD, 96, 023528)


• Forecasts depend on the assumptions about the galaxy sample 
(higher-order biases, the number density)


• Higher number density allows you to go to higher wavenumber, where 
gains on the bispectrum are larger than on the power spectrum.

Forecasts

Forecasted improvement on the 
growth rate (wrt 2pt only 
analysis) for the high-density 
DESI BGS sample.

From Gagrani & Samushia, 2017

The ratio of the bispectrum 
variance wrt the Gaussian 
computation. The black line is the 
PT computation.

From Chan & Bolt, 2017



Gravitational Evolution

• The matter field initially (shortly after the inflation) is Gaussian to a very high degree.


• Therefore it is fully described by its power spectrum.


• The field evolves to be non-linear under gravity, halo, and galaxy formation.


• The nonlinear field can only be fully described by all not functions.


• The mapping of the initial Gaussian field to the low redshift non-linear field is  
invertible in principle on large scales.


• Widely held conjecture: the information content of the Gaussian power spectrum is 
equal to the information content of the all-not functions of the nonlinearly evolved field.


• Corollary: If you reconstruct the galaxy field back to its linear version most of the higher-
order information will go back to the 2pt function.


• We claim that the above statement is not true when the clustering statistics is used as an 
Alcock-Paczyński standard ruler.

Conserving Information

BAO feature in the non-linear 2pt function 
before (black), and after reconstruction (color). 
Reconstruction enhances the standard ruler 
nature of the 2pt function by removing some of 
the n-point signal.

From Seo et al. 2022, 2106.00530



Information Content of the Bispectrum

• The covariance matrices and parameter dependencies come from 16,000 Quijote 
simulations. They are free from the problems that come with theoretical modeling (non-
linear effects).


• This is not a forecast! This is a deliberately artificial construction to demonstrate a point.

• The standard ruler power is determined by how sensitive the measurement is with respect 

to “stretching”.

• When used as a standard ruler the large-scale galaxy bispectrum can have a better 

constraining power than the linear power spectrum.

• Seems to be contradicting previous claims in the literature on the surface level.

• This only works when the bispectrum is used as a standard ruler. 

• For the amplitude-like parameters, the information is “conserved” as the field evolves 

gravitationally from the linear Gaussian progenitor.

Matter field used as a standard ruler
8 Samushia et al.
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Figure 2. The information on the isotropic dilation parameter obtainable from the Gaussian power spectrum (black line), the nonlinear power spectrum (blue
line), and the nonlinear bispectrum (orange line), as a function of maximum wave-number considered in the analysis. The constraints from the nonlinear
field (bispectrum) exceed the ones obtainable from the initial field (linear power spectrum). Derived for the 1⌘�3 Gpc3 box of matter distribution (negligible
shot-noise) at I = 0. The Fisher information of the power spectrum flattens around the peaks of the BAO features. A region remains flat until you go over the
BAO peak. Three flat regions correspond to the three BAO peaks traversed (see Fig. A1). This is not as apparent in the bispectrum since at each :1 we sum over
multiple :2 and :3.

Another interesting question is what happens for the NPCFs of
orders four and higher. This question is very di�cult to answer with-
out performing specific calculations. We were unable to derive re-
liable estimates for the trispectrum from the QuÚote simulations at
high enough wave-numbers. The number of simulations, even though
large for other purposes, was not large enough to reliably compute
covariance matrices for the large number of trispectrum configura-
tions.9 In general, the higher-order polyspectra do provide additional
standard rulers but are also significantly noisier. It may well be that
the bispectrum provides a sweet spot where the increased noise is
compensated by the additional sensitivity to dilation, and for higher
orders the noise scale too steeply for them to make a reasonable
contribution. There is no reason why if the bispectrum is a better
standard ruler than the power spectrum, the trispectrum has to be
an even better standard ruler. Such an intuition would be borrowed
from perturbation theory, where if a certain infinite series diverges

9 Gualdi et al. (2020) presented integrated trispectrum and its covariance
estimates from 5,000 simulations, but their measurements extended only up
to :max = 0.12⌘ Mpc�1. The number of distinct trispectra scales as :3

max and
going to :max = 0.2⌘ Mpc�1 with roughly the same accuracy would require
up to an order of magnitude more simulations.

for lower orders it must also diverge for higher orders. But the prob-
lem at hand has nothing to do with the perturbative expansion in
the linear field, and so we do not think this intuition is necessarily
applicable here.

There are a few reasons why the conclusions of this paper may at
first seem counter-intuitive. One of them is due to the coincidence
noted at the beginning of the section—the BOSS and eBOSS samples
just happened to have number densities and biases that resulted in
apparent conservation of information under reconstruction. Another
source of this uneasiness is the basic intuition from statistics telling us
that invertible transformations cannot create or destroy information.
If one made certain measurements and recorded proper covariances,
one can multiply these measurements by some numbers, raise them to
a power, or apply a wide range of nonlinear transformations. As long
as those transformations are invertible10 and properly accounted for
in the covariance matrices, they are not going to a�ect the amount of
information one can extract from the fields. Current literature tends to
use the signal-to-noise as a universal proxy for the information con-

10 Data reduction techniques such as binning are not always invertible.
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Figure 1. Cumulative signal-to-noise ratio of respectively the Gaussian power
spectrum (black line), the nonlinear power spectrum (blue line), and the
nonlinear bispectrum (orange line), as a function of maximum wave-number
considered in the analysis. This comes from the direct shape and therefore the
linear power spectrum contains all the information. Derived for the 1⌘�3 Gpc3

box of matter distribution (negligible shot-noise) at I = 0.

where the power spectrum (bispectrum) intrinsic shape is known ex-
actly and the amplitude needs to be determined from data, i.e. fitting
to unknown �P and �B in �P%(:) and �B⌫(: , : 0, : 00). On large
scales, the measurement of �P then equivalent to the measurement
of (11f8)2 and �B to that of (11f8)4, where 11 is the linear bias and
f8 (or f12) is one of the possible parametrizations of the amplitude
of matter clustering (Feldman 2010; Sánchez 2020).

The lines on Fig. 1 show signal-to-noise as a function of the
maximum wave-number considered in the analysis for the nonlinear
power spectrum, nonlinear bispectrum, and linear power spectrum
perfectly reconstructed and placed at redshift zero. As expected, the
bispectrum contains significantly less information on the amplitude
and this information grows with the maximum wave-number. Yet we
notice that the information extracted from the joint fit is always below
the information extractable from the linear power spectrum. This
result is not surprising. The amplitude is measured in the intrinsic
shape of the polyspectra bin by bin, and the results are in line with
our expectation from equations (9) and (10).

Fig. 2 shows a similar plot of the information on the dilation pa-
rameter U. These constraints come from the usage of the polyspectra
as standard rulers (not the intrinsic shape) and are described by equa-
tion (17). These equations do not force the cumulative information
in the final and initial fields to be equal, and it is indeed the case
that at about : = 0.13⌘ Mpc�1 the bispectrum becomes a better
standard ruler for constraining U then the initial power spectrum. By
:max = 0.2⌘ Mpc�1 the improvement reaches a factor of two.

The step-like structure with increasing :max in the two lines cor-
responding to the power spectrum information is not a numerical
artifact. These steps appear because the main feature in the power
spectrum—the BAO wiggles—are stronger standard rulers at the
edges of a given wave-form (more sensitive to dilation) than at their
minima and maxima. The slope of the information curve is therefore
flattened as we pass over peaks in the BAO wiggles. The low-redshift
power spectrum line is slightly above the Gaussian power spectrum at
very low wave-numbers for a similar reason: the nonlinear evolution
moves the crest of the BAO to slightly higher wave-numbers. Techni-
cal details behind these computations are presented in Appendix A.

One could argue that comparing the Gaussian power spectrum

and the bispectrum at a fixed :max is not fair since the bispectrum
“siphons the information” from smaller scales in the initial field.
This is certainly true, but our findings suggest that the bispectrum
is a much better standard ruler at :max = 0.2⌘ Mpc�1 even when
compared to the Gaussian power spectrum up to :max = 0.5⌘Mpc�1.

4 CONCLUSIONS

In the previous sections we showed that, in general, there is no
relationship between how good standard rulers from the nonlinear
field are compared to their Gaussian field counterpart. Whether the
reconstructed power spectrum or the nonlinear bispectrum is a better
standard ruler will depend on the specifics of a galaxy sample such
as its redshift, number density and bias (Gagrani & Samushia 2017b;
Chan & Blot 2017; Yankelevich & Porciani 2019; Colavincenzo
et al. 2019; Philcox & Eisenstein 2019; Hahn et al. 2020; Gualdi
& Verde 2020; Sugiyama et al. 2020b; Leicht et al. 2020; Hahn &
Villaescusa-Navarro 2020). It is undeniable that the linear power
spectrum is significantly easier to analyze due to the size of the data,
and the ease of modeling and computing covariance matrices. Even
if the bispectrum is a better standard ruler in principle, we may not
be able to reliably extract this information in practice.

On the other hand, our tests on Quijote simulations suggest that
at redshift zero the real-space nonlinear matter field is a better stan-
dard ruler by a factor of two! There is no reason why going to the
redshift-space will reverse this order of precedence. If anything, the
bispectrum analysis should benefit more from the addition RSD. We
presented our main results for the bare-bones case of the real-space
unbiased tracers to keep the physical picture simple, but we checked
that adding extra nuisance parameters accounting for e.g. bias param-
eters and non-Poissonian shot-noise does not a�ect our conclusions.

One may wonder why it is that for the BOSS (Dawson et al. 2013)
and eBOSS (Dawson et al. 2016) samples the constraints coming
from the joint analysis of the power spectrum and the bispectrum
are slightly lower than the constraints from the reconstructed power
spectrum. We think this is very likely due to the e�ect of shot-noise in
those samples. The shot-noise a�ects the variance of the high wave-
number modes more than it a�ects that of the low wave-number
modes. The bispectrum starts overtaking the linear power spectrum
as a standard ruler at wave-numbers of : ⇠ 0.15⌘ Mpc�1. As the
shot-noise increases, the contribution of these wave-number bins
gets down-weighted. This and the fact that the nonlinear bias terms
are expected to a�ect the bispectrum more at higher wave-numbers
may be the reason behind the apparent “conservation of information”
between nonlinear and linear fields in the BOSS and eBOSS samples.

The Bright Galaxy Survey (BGS) sample at low redshifts and the
Emission Line Galaxy (ELG) sample at around I ⇠ 1 from the Dark
Energy Spectroscopic Instrument (DESI; 2019-2024) experiment,
will have a significantly higher number density. We expect for these
samples that the higher-order polyspectra will perform especially
well. On a longer time horizon, the ATLAS (Astrophysics Telescope
for Large Area Spectroscopy) probe (Wang et al. 2019a) is designed
to provide a galaxy sample with a density of = = 10�2⌘3 Mpc�3,
and the forecasts for the higher-order analysis look very promising
Wang et al. (2019b). 21-cm intensity mapping surveys (Pritchard &
Loeb 2012; Villaescusa-Navarro et al. 2014; Bull et al. 2015), which
have very low shot-noise, are another potentially rich candidate for
use of these methods (Saiyad Ali et al. 2006; Yoshiura et al. 2015;
Majumdar et al. 2018; Bharadwaj et al. 2020). Detailed forecasts for
these surveys are very complicated and fall outside of the scope of
this paper.
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Why does this feel counterintuitive?

• The language we use to describe the BAO measurements is sometimes misleading. BAO dark energy 
constraints don’t actually come from the dependence of the peak position on cosmology (e.g. 108 vs 
110 Mpc). That the peak position changes with cosmology is actually a nuisance for the BAO 
distance measurements.


• If the BAO feature was already in the initial conditions (and didn’t get enhanced by the gravitational 
evolution) how can there be more of it in a non-linear field? The information extracted by the 
standard ruler is not the information encoded in the initial conditions by baryonic physics (although 
that needed to happen for the standard ruler tests to become possible)


• Standard candles (Supernova) are a good analogy. Since they exist and happen to have 
standardizable luminosities we can use them to derive distance measurements. This information 
does not come from anywhere in particular in the initial Gaussian field. The amount of information 
we can extract from the standard candles is not limited by the properties of the initial Gaussian field. 

Standard rulers are different



Improved BAO Constraints from Bispectrum

• The project is led by the KSU student Jayashree Behere and a postdoc Mehdi 
Rezaie.


• The goal is to perform the BAO/RSD fitting of the DESI bispectrum (jointly with 
the power spectrum).


• Properly marginalize broadband terms in the bispectrum so that the information 
comes only from the BAO feature and is not contaminated by anything else (see 
the figure on the right).


• Compute reliable covariance matrices that can be used for a thinly-binned 
bispectrum measurement up to a k ~ 0.2 Mpc/h.


• Make sure the procedure is robust with respect to DESI observational systematics


• Make sure the measurements recover cosmology without a systematic bias.

DESI LRG mocks

Preliminary

BAO only bispectrum of DESI LRGs

Work in progress.

Jayashree Behere Mehdi Rezaie



Summary

• Three-point correlation functions are relatively easy to compute in both configuration and 
Fourier spaces. Fast public parallel codes are available.


• We see that for some galaxy samples the small-scale 3pt functions can result in extremely tight 
constraints on the galaxy-halo connection. In some cases completely overwhelming the results 
obtainable with the 2pt analysis


• The large-scale 3pt functions can be used as standard rulers and their information content may 
turn out to be much higher than one would naively expect


• BAO measurements from the BOSS data enhance the standard 2pt measurements by up to 20%.


• We are working towards a DESI bispectrum analysis that would be robust with respect to 
theoretical and observational systematics

Higher-Order Statistics on Linear and Non-Linear Scales


