

Galaxy Intrinsic Alignment as a Probe in Spectroscopic Surveys

Jingjing Shi, with Ken Osato, Toshiki Kurita, Masahiro Takada +

GALAXY INTRINSIC ALIGNMENT

- Challenge contaminates weak lensing cosmology
- Opportunity probe of cosmology and galaxy formation physics

GALAXY INTRINSIC ALIGNMENT – THEORIES

Catelan+2001, Hirata & Seljak 2004, White 1984

GALAXY INTRINSIC ALIGNMENT – THEORIES

Catelan+2001, Hirata & Seljak 2004, White 1984

II+GG

II: intrinsic alignment GI: intrinsic alignment GG: cosmic shear

Galaxy intrinsic alignment — Primary contamination of cosmic shear cosmology (Hirata & Seljak 2004, Troxel+2015)

INTRINSIC ALIGNMENT – PROBE OF COSMOLOGY

Complementary probe of Baryonic Acoustic Oscillation, Redshift Space Distortion (Chisari+2013, Taruya & Okumura 2020)

INTRINSIC ALIGNMENT – PROBE OF COSMOLOGY

Probe of Primordial non-Gaussianity (Schmidt+15, Akitsu+20) $\zeta^{\text{NG}}(x) = \zeta(x) + f_{\text{NL}}^{s=0}[\zeta(x)^2 - \langle \zeta \rangle^2]$

 $\zeta^{\mathrm{NG}}(x) = \zeta(x) + f_{\mathrm{NL}}^{s=2}[(\psi_{ij})^2 - \langle (\psi_{ij})^2 \rangle] \qquad \psi_{ij}(x) \equiv \nabla^{-2}(\partial_i \partial_j - \frac{\delta_{ij}^K}{3} \nabla^2 \zeta)$

INTRINSIC ALIGNMENT – PROBE OF COSMOLOGY

Probe of Primordial non-Gaussianity (Schmidt+15, Akitsu+20) $\zeta^{\text{NG}}(x) = \zeta(x) + f_{\text{NL}}[\zeta(x)^2 - \langle \zeta \rangle^2]$

INTRINSIC ALIGNMENT – OBSERVATIONS

Mandelbaum+2011, Yao+2020

Blue star-forming galaxies — no clear IA signal detected so far

IA measurement : spectroscopic survey $\delta_g \bigotimes \gamma_g^{+,\times}$ from image survey

ONGOING/UPCOMING SURVEYS

Imaging surveys

ROUSS

Nancy Grace Roman Space Telescope (WFIRST)

Spectroscopic surveys

HSC

PFS

(2014~)

(2024~)

Adapted from Atsushi Taruya's slide

EMISSION LINE GALAXY (ELG) SURVEYS

Testing ACDM	Assembly history of galaxies	Importance of IGM
$\begin{array}{c} \textbf{V} \\ $	 PFS+HSC synergy Absorption probes with PFS/SDSS QSOs around PFS/HSC host galaxies Stellar kinematics and chemical abundances – MW & M31 assembly history Halo-galaxy connection: M_*/M_{halo} Outflows & inflows of gas Environment-dependent evolution 	 Search for emission from stacked spectra dSph as relic probe of reionization feedback Past massive star IMF from element abundances Physics of cosmic reionization via LAEs & 21cm studies Tomography of gas & DM

PFS survey cosmology: use single tracer ([OII] emission line galaxies, i.e. ELGs) to map evolution of the large-scale structure of the Universe in a wide range of redshifts, 0.6 < z < 2.4, over 1400 deg² sky area covered also by the HSC image survey

DESI targets:

Galaxy type	Redshift	Bands	Targets	Exposures	Good z 's	Baseline
	range	used	$per deg^2$	$per deg^2$	$\mathrm{per}\;\mathrm{deg}^2$	sample
LRG	0.4 - 1.0	r,z,W1	350	580	285	4.0 M
ELG	0.6 - 1.6	g,r,z	2400	1870	1220	17.1 M
QSO (tracers)	< 2.1	g,r,z,W1,W2	170	170	120	$1.7 \mathrm{M}$
QSO (Ly- α)	> 2.1	g,r,z,W1,W2	90	250	50	$0.7 {\rm M}$
Total in dark time			3010	2870	1675	23.6 M
BGS	0.05 - 0.4	r	700	700	700	9.8 M
Total in bright time			700	700	700	9.8 M

DESI Collaboration, 2016

INTRINSIC ALIGNMENT – SYNERGY BETWEEN IMAGE AND SPEC-Z SURVEYS

INTRINSIC ALIGNMENT OF ELGS

Mandelbaum+2011, Yao+2020

Blue star-forming galaxies — no clear IA signal detected so far

Shi+2021a

SIMULATION

OBSERVATION

INTRINSIC ALIGNMENT OF ELGS

Mandelbaum+2011, Yao+2020

Blue star-forming galaxies — no clear IA signal detected so far

OBSERVATION

SIMULATION

SHAPE ESTIMATOR

OBSERVATION

$$I_{ij} = \frac{\int d^2\theta w(\theta) f(\theta) \theta_i \theta_j}{\int d^2\theta w(\theta) f(\theta)}$$

$$\epsilon_{+} \equiv \frac{I_{11} - I_{22}}{I_{11} + I_{22}}, \epsilon_{\times} \equiv \frac{2I_{12}}{I_{11} + I_{22}}$$

SIMULATION

$$I_{ij}^{\text{reduced}} = \frac{\sum_{n} m_n \frac{x_{ni} x_{nj}}{r_n^2}}{\sum_{n} m_n}$$

luced
$$\sum_{n} m_n \frac{x_{ni} x_n}{r_n^2}$$

SFR ranked selected galaxies

roughly corresponds to

[OII] emission line strength selected galaxies

Gonzalez-Perez+2020; Osato & Okumura 2022

Ray-tracing simulation using Pégase.3 code

APERTURE SHAPE ESTIMATOR

INTRINSIC ALIGNMENT OF ELGS

No IA signal with reduced shape estimator

$$\langle \gamma_E(\mathbf{k})\delta_m(\mathbf{k'})\rangle \equiv (2\pi)^3 \delta_D(\mathbf{k} + \mathbf{k'}) P_{\delta E}(\mathbf{k})$$

IA power spectrum (Kurita+2020, Shi+2021a)

- Galaxy intrinsic alignment is a promising synergy science between cosmological spec-z survey and image survey
- IA signal surrounding blue/star-forming galaxies can be extracted with the aperture shape estimator
- IA can be a useful complementary/special cosmological probe (ongoing efforts)

IA POWER SPECTRUM
$$f_{e_{k}<0}$$
 $f_{e_{k}<0}$ $\epsilon_{+} \equiv \frac{I_{11} - I_{22}}{I_{11} + I_{22}}, \epsilon_{\times} \equiv \frac{2I_{12}}{I_{11} + I_{22}}$ $\epsilon_{+} \equiv -\frac{\hat{L}_{1}^{2} - \hat{L}_{2}^{2}}{1 + \hat{L}_{3}^{2}}, \epsilon_{\times} \equiv -\frac{2\hat{L}_{1}^{2}\hat{L}_{2}^{2}}{1 + \hat{L}_{3}^{2}}$ $\epsilon_{+} \equiv -\frac{\hat{L}_{1}^{2} - \hat{L}_{2}^{2}}{I_{11} + I_{22}}, \epsilon_{\times} \equiv \frac{2\hat{L}_{1}^{2}\hat{L}_{2}^{2}}{1 + \hat{L}_{3}^{2}}$ $\gamma_{+,\times} \equiv \epsilon_{+,\times}/(2\mathcal{R}), \text{ where } \mathcal{R} \equiv 1 - \langle \epsilon_{i}^{2} \rangle$ $\gamma_{E}(\mathbf{k}) = \gamma_{+}(\mathbf{k}) \cos 2\phi_{\mathbf{k}} + \gamma_{\times}(\mathbf{k}) \sin 2\phi_{\mathbf{k}},$ $\gamma_{B}(\mathbf{k}) = -\gamma_{+}(\mathbf{k}) \sin 2\phi_{\mathbf{k}} + \gamma_{\times}(\mathbf{k}) \cos 2\phi_{\mathbf{k}},$ $\langle \gamma_{E}(\mathbf{k})\gamma_{E}(\mathbf{k}') \rangle \equiv (2\pi)^{3}\delta_{D}(\mathbf{k} + \mathbf{k}')P_{EE}(\mathbf{k}),$ $\langle \gamma_{E}(\mathbf{k})\delta_{m}(\mathbf{k}') \rangle \equiv (2\pi)^{3}\delta_{D}(\mathbf{k} + \mathbf{k}')P_{\delta E}(\mathbf{k}),$ $\langle neutrin 4 - 2021, Shi et al. 2021a$

 $\langle \gamma_E(\boldsymbol{k})\delta_g(\boldsymbol{k'})\rangle \equiv (2\pi)^3 \delta_D(\boldsymbol{k} + \boldsymbol{k'}) P_{gE}(\boldsymbol{k}),$

- Full information on 2pt statistics
 - High S/N ratio

TATT

Blazek+2019

$$\gamma_{ij}^{I} = \underbrace{C_{1}s_{ij}}_{\text{Tidal Alignment}} + \underbrace{C_{1\delta}(\delta \times s_{ij})}_{\text{Density Weighting}} + \underbrace{C_{2}\left[\sum_{k=0}^{2} s_{ik}s_{kj} - \frac{1}{3}\delta_{ij}s^{2}\right]}_{\text{Tidal Torquing}} + \dots,$$

$$C_1 = -A_1 \bar{C}_1 \frac{\Omega_{\rm m} \rho_{\rm crit}}{D(z)},$$

 $C_2 = 5A_2\bar{C}_1\frac{\Omega_{\rm m}\rho_{\rm crit}}{D^2(z)}.$

Samuroff+2020

Model	Parameter	Prior
NLA	A_1	U[-6, 6]
	b_g	$\mathrm{U}[0.05,8]$
TATT	A_1	U[-6,6]
	A_2	U[-6,6]
	b_{TA}	U[-6,6]
	b_g	$\mathrm{U}[0.05,8]$

$$C_{1\delta} = -A_{1\delta}\bar{C}_1 \frac{\Omega_{\rm m}\rho_{\rm crit}}{D(z)},$$

Shi+2021b

