Impact of environment on galaxy evolution at intermediate redshift from the **MAGIC survey**

Wilfried Mercier, Benoît Epinat, Thierry Contini, Valentina Abril-Melgarejo & Muse GTO Collaboration

Aix*Marseille

 \odot ra

Galaxy evolution with cosmic time

Impact of environment on galaxy evolution ?

How efficient is the environment in shaping the Hubble sequence ?

- \triangleright Build-up of the red sequence ?
- \triangleright Environmental vs mass quenching ?

Which mechanisms play a crucial role ?

- \triangleright Hydrodynamical ?
 - $\rightarrow\,$ stripping, evaporation, \ldots
- ▷ Gravitational ?
 - $\rightarrow\,$ merging, harassment, ...

The need for spatially resolved properties

The need for spatially resolved properties

Survey	N gal.	z	$\frac{\log(M_*)}{M_{\odot}}$	log(SFR) $M_{\odot} yr^{-1}$	Operating band
MASSIV	84	0.9 - 1.8	9 - 10	0.7 - 2.6	J, H SINFONI
KMOS 3D	739	0.6 - 2.7	9 - 11.4	-0.7 - 2.5	YJ, H, K KMOS
KROSS	795	0.6 - 1	10.0 ± 0.1	5 ± 1	J KMOS
IMAGES	68	0.4 - 0.75	10.2 - 11.1	2	Optical–NIR FLAMES GIRAFFE
SINS	80	1.3 - 2.6	10 - 11.1	1.14 - 2.9	J,H,K SINFONI

▷ Need for statistics

- But studies usually probe massive SF galaxies
- ▷ And rarely probe the environment

Description of the MAGIC survey

Large FoV and sensitivity

 $\,\vartriangleright\,$ Spectral coverage: 5000 Å $\lesssim\lambda\lesssim$ 9000 Å

 \triangleright Blind survey

 \triangleright Perfect to probe the environment

Spectral resolution

 $ho R \sim 3000$

Spatial resolution

 $\vartriangleright ~{\rm FWHM} \sim 0.7 - 0.35\, \text{arcsec}$

MUSE-gAlaxy Groups In Cosmos (MAGIC) survey

- ▷ 70 h on-source MUSE-GTO project
 - $\rightarrow~$ half with AO
- ightarrow 17 fields in COSMOS (15 groups at 0.35 < z < 0.75)
 - \rightarrow Selected from COSMOS group catalogue (Knobel+12)
 - ightarrow COSMOS wall structure (lovino+16) for 7 groups at $z\sim 0.7$
 - \rightarrow Multiwavelength data (> 20 bands)
 - → SED-fitting with FAST (Kriek+09) & now CIGALE (Epinat et al., in prep)

Redshift determination in MAGIC

- Redshift determination from PSF-weigthed spectrum with MARZ (Hinton+16)
- Targets from COSMOS catalogue without magnitude limit (blind-like survey)
- ▷ Using absorption & emission lines
- ▷ Confidence flag (CONFID)

\sim 2000 objects

Structure identification with MUSE

FoF algorithm

- $arpropto \Delta V = 500 \, \mathrm{km \, s^{-1}}$
- $arpropto \Delta R = 450\,{
 m kpc}$

Identification of sub-structures

Various density estimates

Mnc⁻²])

Galaxy population and dependence with environment

Local density estimates

MAGIC survey completeness

Completeness of 100% below $z_{\rm app}^{++} \lesssim$ 24.5 & up to z ≈ 1.5

ho Drop in completeness in 1.5 $\lesssim z \lesssim$ 3 (MUSE redshift desert)

Blind-like survey

▷ Lack of faint galaxies at high-z (flux limited)

Main results

First evidence for ram pressure stripping at $z\sim 0.7$

Giant ionised gas structure at $z\sim 0.7$

-60

-120

240

320

160

- $\triangleright~$ First detection of two massive $(M_{\rm gas} \sim 10^{10} \, {\rm M_{\odot}})$ and large $(\sim 10^4 \, {\rm kpc}^2$) decoupled kinematic sub-structures:
 - Gas kinematically bound to main galaxy → ouflow or gravitationnaly trapped stripped gas
 - 2. Presence of tidal tails & AGN outflow
- \triangleright Different origins:
 - 1. Photo-ionisation & shocks
 - 2. At least AGN

The TFR in dense groups at $z \sim 0.7$

- $\rhd\,$ Selection of well resolved and bright SF [OII] emitters in dense groups at $z\sim0.7$
- Morphological modelling using HST maps
- kinematical modelling using the MUSE cubes
- ▷ Flat rotation curve

The TFR in dense groups at $z \sim 0.7$

- ▷ Comparison with KMOS3D, KROSS & ORELSE samples
- ▷ Visible impact of environment on the TFR
 - $\rightarrow\,$ Effect of quenching (mass build-up stopped in dense structures for a given DM halo) ?
 - \rightarrow Effect of baryon contraction (peak velocity is increased by the contraction for a given stellar mass) ?

Galaxy scaling relations vs environment

- $\,\vartriangleright\,$ Use of the entire sample of [OII] emitters
 - → **Field** galaxies (foreground & background)
 - $\rightarrow\,$ Separation between small & large structures

- ▷ Methodology similar to Abril-Melgarejo+21...
 - \rightarrow ...except that we implement **mass models** constrained from morphology
 - \rightarrow ...except that we study the size-mass and $\ensuremath{\textit{mass-SFR}}$ relations and the $\ensuremath{\textit{TFR}}$
 - \rightarrow ...and that we refine the selection

Galaxy scaling relations vs environment

Galaxies in massive structures $\ensuremath{\textbf{denser}}$ than those in the field

 \triangleright 15% smaller at fixed stellar mass

Reduced star formation in massive structures

reduction by a factor of 1.5 at fixed stellar mass

Galaxy scaling relations vs environment

Latest study: angular momentum in MAGIC

Conclusions

Impact of the environment on $z \sim 0.7$ SF galaxies with MUSE

- \triangleright Multi-band data from COSMOS
- \triangleright High completeness and detection rate
- ▷ Different environments (field, groups and clusters)
- \triangleright Large statistics (> 1000 [OII] emitters)

Synergy: HDUF & MUSECATEL

Data cubes already available

Catalogue upcoming (Epinat et al., in prep.)

Plenty of other science cases to study !