Star Formation Rate Estimations at $0.5 \le z \le 0.9$ with the VIMOS Public Extragalactic Redshift Survey

Miguel Figueira Sebastião

Postdoctoral Fellow University Nicolaus Copernicus in Toruń National Centre for Nuclear Research in Warsaw

From galaxies to cosmology with deep spectroscopic surveys A tribute to Olivier Le Fèvre

July 5, 2022

< ロト < 同ト < ヨト < ヨト

Introdu	iction
000	

Star-forming galaxies

Photometric SFR calibrations

Spectral lines SFR calibrations

Star Formation Rate & Calibrators

- Formation and evolution of galaxies depend on the build-up of stellar mass throughout time (SFR)
- More and more global surveys at higher redshift allow the study of SFR at different times
- SFR measurements over cosmic time gives us information about the galaxies at different epochs of the Universe

Toolbox with several SFR indicators needed

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

Introduction ○●○	Star-forming galaxies	Photometric SFR calibrations	Spectral lines SFR calibrations
SFR trace	ers		

Skąd wiadomo, ile gwiazd rodzi się w galaktyce? (Miguel Figueira, Delta, 01/11/21)

イロト イロト イヨト イヨト

3

Introduction ○○● Star-forming galaxies

Photometric SFR calibrations

Spectral lines SFR calibrations

Motivations

Which continuum bands and lines trace consistently the SFR up to $z \sim 0.9$

Similar bands and calibrations at low-redshift ? $(z \le 0.3)$

Miguel Figueira Sebastião Star Formation Rate at $0 \le z \le 0.9$

イロト イポト イヨト イヨト

Spectral lines SFR calibrations

(optical/NIR part of the spectrum)

イロト イポト イヨト イヨト

5/30

The VIMOS Public Extragalactic Redshift Survey

Guzzo and VIPERS Team [2013], Garilli et al. [2014], Scodeggio et al. [2018]

Spectroscopic survey of ~80 000 galaxies with 0.4 $\leq z \leq$ 1.2

- CFHTLS ugriz K_s bands
- Cross-correlation with GALEX
 - GALEX (UV part of the spectrum)
- Cross-correlation with WISE, Spitzer, Herschel (IR part of the spectrum)
 - $\frac{1}{2} = \frac{1}{2} = \frac{1}$

Star-forming galaxies ○●○○○○ Photometric SFR calibrations

Spectral lines SFR calibrations

VIPERS star-forming galaxies ($0.5 \le z \le 0.9$)

Reliable galaxies

- 1) 99% confidence on z_{spec}
 - $3 \le z_{flag} \le 4.5$
- 2) Lines measurements
 - EW $\ge 3\sigma$
 - S/N ≥ 7

イロト イポト イヨト イヨト

Sample selected

SF + SF/Seyfert2 3457 galaxies at $0.5 \le z \le 0.9$

Star-forming galaxies

Photometric SFR calibrations

Spectral lines SFR calibrations

GSWLC star-forming galaxies ($0 \le z \le 0.3$)

Catalog flags	Initial catalog	Good SED ($\chi_r^2 < 5$)	GALEX data	L _{IR} -WISE	MGS
	640 659	595 586	209 628	154 623	149 712
Lines S/N	С	ross-correlation MPA-JH 149 374	U	S/N sele 93 6	ection 05

Galex-SDSS-Wise Legacy Catalog ($z \le 0.3$)

- 12/22µm→ L_{TIR} → Additional constraint (SED+L_{TIR} fitting)
- BPT diagram [Baldwin et al., 1981] SF/Seyfert limit [Kauffmann et al., 2003]

Sample selected

91 533 SF galaxies at $z \le 0.3$

イロト イポト イヨト イヨト

Introduction	Star-forming galaxies ○○○●○○	Photometric SFR calibrations	Spectral lines SFR calibrations
Above z	~ 0.5		

SFR from H α commonly used to calibrate other bands. At 0.5 \leq *z* \leq 0.9, H α shifted out of the optical window

イロト イポト イヨト イヨト

Introduction	Star-forming galaxies ○○○○●○	Photometric SFR calibrations	Spectral lines SFR calibrations
Above z ~	0.5		

SFR from H α commonly used to calibrate other bands. At 0.5 $\leq z \leq$ 0.9, H α shifted out of the optical window

Star-forming galaxies ○○○○○● Photometric SFR calibrations

Spectral lines SFR calibrations

With CIGALE!

Burgarella et al. [2005], Noll et al. [2009], Boquien et al. [2019]

 Code Investigating GALaxy Emission (CIGALE) reconstructs the SED using the principle of energy-balance

> Stellar radiation absorbed = Emission in IR

- Multiwavelength data available (UV to IR)
- Reconstruction of the galaxies' SED
 1) VIPERS (this work)
 - 2) GSWLC [Salim et al., 2016, 2018]
- Estimation of SFR but also rest-frame luminosities, attenuation for each band, etc...

イロト イヨト イヨト

Star-forming galaxies

Photometric SFR calibrations

Spectral lines SFR calibrations

SFR from FUV & NUV bands

Emission in the FUV/NUV bands (massive stars)

 Dust attenuation is significant at these wavelengths (1500 and 2300 Å)

 $\begin{array}{l} \textbf{CIGALE value (CF00):} \\ A(FUV) = 2 mag \\ A(NUV) = 1.6 mag \end{array}$

- Correction based on FUV and NUV magnitudes, based on β_{UV}, based on a general value
- $A_{FUV} = 3.71 + 1.78\beta_{UV}$
- $A_{NUV} = 2.80 + 1.35\beta_{UV}$

Star-forming galaxies

Photometric SFR calibrations

Spectral lines SFR calibrations

SFR from u-band

Emission in the u-band (young and old stars)

 u-band is contaminated by the old stellar population.

Prescott et al. [2009]: 11% at z=1Boquien et al. [2014]: 39% at $1\leq z\leq 2$ Moustakas and Kennicutt [2006]: Scatter due to attenuation at low D4000

- Davies et al. (2016): Correction based on u – g
- Contamination from CIGALE old/young stars in the u-band
- Estimated contamination for VIPERS: 36%

So relation with *u* − *g* color

Miguel Figueira Sebastião

13/ 30

Star Formation Rate at $0 \le z \le 0.9$

Star-forming galaxies

Photometric SFR calibrations

Spectral lines SFR calibrations

SFR from 8 μ m emission

Emission at 8µm originates (PAHs, stars and dust)

 Contamination at 8μm: 10% [Wu et al., 2005, Engelbracht et al., 2005]

33% [Pérez-González et al., 2006]

- Contamination estimated from CIGALE → 5%
- Difficult to estimate the SFR with 8 μm emission

イロト イロト イヨト イヨト

Star-forming galaxies

Photometric SFR calibrations

Spectral lines SFR calibrations

SFR from 8 μ m emission

イロト イヨト イヨト

Star-forming galaxies

Photometric SFR calibrations

Spectral lines SFR calibrations

SFR from 24 μ m emission

Emission at 24 $\mu \rm m$ originates from dust reprocession

 Good SFR tracer [Chary and Elbaz, 2001, Wuyts et al., 2008, Magdis et al., 2012, Dale et al., 2014]

- Non-linear behaviour should be included
 L_{24μm} does not increase proportionally with L_{T/R}, [Calzetti et al., 2010]
- Preferably calibrated on whole galaxies Difference of \mathcal{T}_{dust} from whole galaxies and H \parallel regions

Star-forming galaxies

Photometric SFR calibrations

Spectral lines SFR calibrations

SFR calibrations with spectral lines

Rest-frame luminosities for photometric bands → k-correction needed Dependent on templates

Line measurements are independent of CIGALE

イロト イポト イヨト イヨト

Star-forming galaxies

Photometric SFR calibrations

Spectral lines SFR calibrations

SFR from H β and [O II] spectral lines

$H\beta$ line

- Hα not available in VIPERS for the redshift range studied (0.5 ≤ z ≤ 0.9)
- Assuming the usual Balmer decrement: $H\alpha = 2.86H\beta$
- Corrected from stellar absorption = 2 Å (In agreement with CIGALE)

[O II] line

- SFR = 1.41 × 10⁻⁴¹ L[O II]
 1) [N II]/Hα = 0.5
 2) [O II]/Hα from specific sample
- Good estimation of the SFR without metallicity dependence and [O II]/Ha

Star-forming galaxies

Photometric SFR calibrations

Spectral lines SFR calibrations

SFR from H β and [O II] spectral lines

$H\beta$ line

- Hα not available in VIPERS for the redshift range studied (0.5 ≤ z ≤ 0.9)
- Assuming the usual Balmer decrement: Hα = 2.86Hβ
- Corrected from stellar absorption = 2 Å (In agreement with CIGALE)

GSWLC log(SFR(0,u))=0.84log(SFRc(GALE)+0.01

[O II] line

• SFR = 1.41 × 10⁻⁴¹ L[O II]

Can we improve the SFR estimation ?

 Good estimation of the SFR without metallicity dependence and [O II]/Ha

Star-forming galaxies

Photometric SFR calibrations

Spectral lines SFR calibrations

Estimation of the metallicity

 $R_{23} \text{ parameter [Pagel et al., 1979]}$ $R_{23} = \frac{[OII]\lambda 3727 + [OIII]\lambda 4959,5007}{H\beta}$ $\bullet R_{23} \text{ is double-valued}$

 Ratio [O III]/[O II] used to distinguish the lower and higher branch [Nagao et al., 2006]

Figure: R₂₃ for different ionization parameters [Kewley and Dopita, 2002]

Figure: [O III]/[O II] for GSWLC (red) and VIPERS (blue)

High-metallicity galaxies only

Star-forming galaxies

Photometric SFR calibrations

Spectral lines SFR calibrations

Estimation of the metallicity

Metallicity [Zaritsky et al., 1994]

$$[Ou]/H\alpha = \begin{cases} 9.265 - 0.33x - 0.202x^{2} \\ -0.207x^{3} - 0.333x^{4}, \\ x = log(R_{23}), \\ Valid \text{ for } log(O/H) + 12 > 8.4. \end{cases}$$
(1)
$$[Ou]/H\alpha = \begin{cases} (-1.82 \pm 0.08)x + (17.07 \pm 0.70) (VIPERS), \\ (-1.79 \pm 0.07)x + (16.99 \pm 0.65) (GSWLC), \\ (-1.75 \pm 0.25)x + (16.73 \pm 2.23), \\ [Kewley et al., 2004]. \\ x = 12 + log(O/H) \end{cases}$$
(2)
Good agreement with Kewley

and Dopita [2002]

イロト イロト イヨト イヨト

Star-forming galaxies

Photometric SFR calibrations

Spectral lines SFR calibrations

Correction reddening and metallicity

O II - reddening

- $SFR = 6.8 \times 10^{-42} L_{[O \parallel]}$
- $SFR = 7.6 \times 10^{-42} L_{[O \parallel]}$
- Reddening correction decreases the scatter

O II - metallicity

 $[O \parallel]/H\alpha = -1.82 \times (12 + log(O/H)) - 17.07$ (VIPERS)

 $[O \parallel]/H\alpha = -1.79 \times (12 + log(O/H)) + 16.99$ (GSWLC)

- Correcting for metallicity decreases the scatter.
- Pilyugin [2001], Tremonti et al. [2004], Kobulnicky et al. [1999] calibrations give a similar scatter

Miguel Figueira Sebastião

Star Formation Rate at $0 \le z \le 0.9$

Star-forming galaxies

Photometric SFR calibrations

Spectral lines SFR calibrations

SFR from [O III] line

O III - direct calibration

- Calibration from Villa-Vélez et al. [2021] (1.40 ≤ z ≤ 1.68)
- Good agreement for VIPERS only

O III - reddening

- SFR= $5.6 \times 10^{-42} L_{[O \text{ in}]}$ (VIPERS)
- SFR=1.6 × $10^{-42}L_{[O \ III]}$ (GSWLC)
- Calibrations change for different samples
- Highest scatter between all the spectral lines

Star-forming galaxies

Photometric SFR calibrations

Spectral lines SFR calibrations

Correction for metallicity

 Metallicity from Villa-Vélez et al. [2021]
 1) Grid depends on log(U) - Z
 2) *q* from Kewley and Dopita [2002] through [O III]/[O II]

Miguel Figueira Sebastião

VIPERS log(SFR_[O III])=1.25log(SFR_{CIGALE})-0.22
 GSWLC log(SFR_[O III])=1.16log(SFR_{CIGALE})-0.05

Star Formation Rate at $0 \le z \le 0.9$

Introd	duct	ion
000		

SFR calibrations at $0 \le z \le 0.9$

- GSWLC and VIPERS are processed through CIGALE \implies SFR, L_{FUV} , L_{NUV} , etc...
- Relation between SFR and rest-frame luminosity for each band (attenuation corrected)

Rest-frame band	A	В	Luminosity range	Unit
FUV	1.04±0.01	-21.99±0.02	$2.1 \times 10^{19} < L < 4.7 \times 10^{23}$	W Hz ⁻¹
NUV	1.03±0.01	-21.81±0.01	$3.9 \times 10^{19} < L < 4.3 \times 10^{23}$	W Hz ⁻¹
u-band	1.11±0.0	-23.62±0.01	$8.3 \times 10^{19} < L < 4.5 \times 10^{23}$	W Hz ⁻¹
8 <i>µ</i> m	0.85±0.01	-18.53±0.14	$3.9 \times 10^{21} < L < 4.4 \times 10^{24}$	W Hz ⁻¹
24 μ m	0.81±0.0	-18.22±0.01	$7.3 \times 10^{20} < L < 2.6 \times 10^{25}$	W Hz ⁻¹
L _{TIR}	0.99±0.01	-9.97±0.03	$3.7 \times 10^8 < L < 4.8 \times 10^{12}$	L_{\odot}
Hβ	0.94±0.01	-38.34±0.04	$9.3 \times 10^{38} < L < 1.0 \times 10^{44}$	erg s ⁻¹
[O II] <i>λ</i> 3727	0.96±0.01	-39.69±0.07	$6.4 \times 10^{39} < L < 1.1 \times 10^{44}$	erg s ⁻¹
[O III] <i>λ</i> 5007	0.89±0.01	-35.94 ± 0.35	$4.4 \times 10^{38} < L < 6.1 \times 10^{43}$	erg s ⁻¹

 $\log[SFR_{band} (M_{\odot} yr^{-1})] = A \times \log[L_{band}(units)] + B$

イロマ ス直マ イヨマ イヨマ

Star-forming galaxies

Photometric SFR calibrations

Spectral lines SFR calibrations

Comparisons of SFR calibrations

Comparison done with the Concordance Correlation Coefficient.

CCC = Pearson coefficient + Deviation from y = x

Reference	Catalog – Band	N	m	b	Pearson	Mean	Scatter	CCC	CCC _{GV}
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
			FUV						
	V – (Calzetti)	3 457	1.21	-0.28	0.99	0.09	0.10	0.94	0.01
Brown et al [2017]	G – (Calzetti)	91 533	0.95	-0.06	0.83	0.02	0.30	0.83	0.91
Blown et al. [2017]	V – (Hao)	3 457	1.05	-0.04	0.99	0.01	0.05	0.99	0.04
	G – (Hao)	91 533	0.95	0.02	0.88	-0.02	0.25	0.88	0.94
Device et al [2016]	V	3 457	0.82	0.0	0.99	0.16	0.07	0.87	0.00
Davies et al. [2010]	G	91 533	0.67	0.12	0.85	-0.07	0.25	0.82	0.00
Salim at al [2007]	V	3 457	1.0	-0.01	1.00	0.02	0.03	0.99	0.04
Saini et al. [2007]	G	91 533	0.88	0.09	0.87	-0.08	0.24	0.86	0.94
	•	•	NUV						
Davias et al [2016]	V	3 457	0.80	-0.13	0.97	0.29	0.10	0.67	0.70
Davies et al. [2010]	G	91 533	0.59	0.07	0.80	-0.01	0.29	0.76	0.75
Salim et al. [2007]	V	3 457	1.0	-0.01	1.00	0.02	0.03	0.99	0.02
	G	91 533	0.89	0.09	0.87	-0.08	0.24	0.86	0.93
Bass Canzélaz et al [2002]	V	3 457	1.09	0.08	0.47	-0.11	0.32	0.43	0.70
Hosa-Gonzaiez et al. [2002]	G	91 533	0.83	0.33	0.86	-0.20	0.25	▶ 0.77	9 4 C

Miguel Figueira Sebastião

Star Formation Rate at $0 \le z \le 0.9$

26/30

Introduction	Star-forming galaxies	Photometric SFR calibrations	Spectral lines SFR calibrations
Summary			

Comparison of SFR (continuum and lines) of star-forming galaxies at $0 \le z \le 0.9$ (GSWLC-VIPERS) (*Figueira et al. under review*)

- Reconstruction of galaxies' SED \longrightarrow catalog of properties
- Tight correlation between the UV/u band/24 μm/L_{TIR} (rest-frame) with SFR

 \rightarrow Low-z calibrations give good estimations of SFR up to z ~ 0.9

- H β and [O II] perform reliably at $0 \le z \le 0.9$
- Correction of metallicity decreases the scatter for [O II] and [O III]
- Set of calibrations from FUV to L_{TIR} and spectral lines at $0 \le z \le 0.9$ (GSWLC + VIPERS)

イロト 不得 トイヨト イヨト

Star-forming galaxies

Photometric SFR calibrations

Spectral lines SFR calibrations

Thank you for your attention!

Miguel Figueira Sebastião Star Formation Rate at $0 \le z \le 0.9$

イロト イポト イヨト イヨト