A False Quadrupole
 How galaxy tidal alignments contaminate DESI's clustering statistics

Claire Lamman

From galaxies to cosmology with large spectroscopic surveys 07.04.22

Clustering Statistics

Monopole ξ_{0}

Quadrupole ξ_{2}

Anisotropic Clustering

Real space:

Redshift space:

Squashing effect

Kaiser Effect $\xi_{2}<0$

Fake RSD!

Galaxy orientation correlated with LSS

Bias in galaxy orientations from survey

Bias in LSS (specifically ξ_{2})

How aperture target selection contaminates RSD measurements

Claire Lamman

Originally proposed by Hirata 2009

Demonstration with AbacusSummit Simulations

Lehman Garrison, AbacusSummit
Effects of fiber magnitude selection on quadrupole with Abacus

Lamman \& Eisenstein, in prep

$$
\xi_{\mathrm{GI}}=\epsilon_{\mathrm{LRG}} \frac{L w_{x, \mathrm{obs}}}{R^{2} \frac{d}{d R}\left[\frac{1}{R^{2}} \Psi\right]} \frac{1}{\left\langle\epsilon_{z z}^{2}\right\rangle} \int \frac{q^{2} d q}{2 \pi^{2}} P(q) j_{2}(q r)
$$

$\xi_{\mathrm{GI}} \propto \epsilon_{L R G} w_{\times}$

LRGs aligned with + Tidal Field

LRG polarization due to fiber
magnitude selection

Dark Energy Spectroscopic Instrument

DESI Legacy Imaging Survey

$\xi_{\mathrm{GI}} \propto \epsilon_{L R G} w_{\times}$

$$
w_{\times}
$$

LRGs aligned with Tidal Field

LRG polarization
\longrightarrow
False ξ_{2} due to fiber magnitude selection

$$
\epsilon=\frac{a-b}{a+b} \exp 2 i \phi
$$

$$
\epsilon_{1}=\operatorname{Re}(\epsilon)=|\epsilon| \cos 2 \phi
$$

© Line of sight

Shape - Density Alignment w_{\times}

$\xi_{\mathrm{GI}} \propto \epsilon_{L R G} w_{\times}$

$w_{\times} \quad \epsilon_{L R G}$

ξ_{GI}

LRGs aligned with +
 Tidal Field

LRG polarization
\longrightarrow
due to fiber
magnitude selection

Polarization $\epsilon_{\text {LRG }}$

Average orientation of LRGs relative to the LOS due to aperture selection

$\epsilon_{\mathrm{LRG}}=0.0087 \pm 0.0002$

$$
\xi_{\mathrm{GI}} \propto \epsilon_{L R G} w_{\times}
$$

$$
w_{\times} \quad \epsilon_{L R G} \quad \xi_{\mathrm{GI}}
$$

$\underset{\text { Tidal Field }}{\text { LRGs aligned with }}+\underset{$| due to fiber |
| :---: |
| magnitude selection |$}{\text { LRG polarization }} \rightarrow \quad$ False ξ_{2}

Bias on ξ_{2}

Lamman \& Eisenstein, in prep

Kazantzidis \& Perivolaropoulos, 2021

Summary

Any survey which:

1. Has an orientation-dependent selection bias
2. Is surveying galaxies with tidal alignments
...will have biased RSD measurements

DESI preferentially selects galaxies in density filaments which lie along the LOS.
This dampens ξ_{2}, and therefore the rate of structure growith, on large scales.

Huterer, Kirkby et al. 2015

Figure 2. Constraints on the growth of density fluctuations in the Universe with errors projected from a future survey designed with DESI specifications. The curves show the derivative of the logarithmic growth with respect to the logarithmic scale factor - a quantity readily measured from the clustering of galaxies in redshift space - as a function of redshift. We show theory predictions for the $\Lambda C D M$ model, as well as for two modified-gravity models: the Dvali-Gabadadze-Porrati braneworld model [3] and the $f(R)$ modification to the Einstein action [4]. Because growth in the $f(R)$ models is generically scale-dependent, we show predictions at two wavenumbers, $k=0.02 h \mathrm{Mpc}^{-1}$ and $k=0.1 h \mathrm{Mpc}^{-1}$. LSST projects to impose constraints of similar excellent quality on the growth function $D(a)$.

