Prime Focus Spectrograph Galaxy Evolution Survey

On behalf of the PFS Galaxy Evolution Working Group Rachel Bezanson, Jenny Greene, Masami Ouchi, John Silverman (co-Chairs)

Greene+2022 arXiv:2206.14908

The Prime Focus Spectrograph Galaxy Evolution Survey

JENNY E. GREENE,¹ RACHEL BEZANSON,² MASAMI OUCHI,^{3,4} JOHN SILVERMAN,^{4,5} STÉPHANE ARNOUTS,⁶ ANDY D. GOULDING,¹ MENG GU,¹ JAMES E. GUNN,¹ YUICHI HARIKANE,³ TIMOTHY HECKMAN,⁷ BENJAMIN HOROWITZ,¹ SEAN D. JOHNSON,⁸ DAICHI KASHINO,^{9,10} KHEE-GAN LEE,⁴ JOEL LEJA,^{11,12,13} YEN-TING LIN,¹⁴ DANILO MARCHESINI,¹⁵ YOSHIKI MATSUOKA,¹⁶
KENTARO NAGAMINE,^{17,4,18} YOSHIAKI ONO,³ ALAN PEARL,² TAKATOSHI SHIBUYA, MICHAEL A. STRAUSS,¹ ALLISON L. STROM,¹ YUMA SUGAHARA,^{20,21} LAURENCE TRESSE,⁶ KIYOTO YABE,⁴ TAKUJI YAMASHITA,²⁰ MASAYUKI AKIYAMA,²² METIN ATA,⁴ GABRIEL M. AZEVEDO,²³ CHIAN-CHOU CHEN,²⁴ ANA L. CHIES-SANTOS,²³ RICHARD S ELLIS,²⁵ CHANGHOON HAHN,¹ GABRIEL ROBERTO HAUSCHILD ROIER,²⁶ KOHEI ICHIKAWA,²⁷ KEI ITO,²⁸ LINHUA JIANG,²⁹ Y.P. JING,³⁰ TAIKI KAWAMURO,³¹ CHIAKI KOBAYASHI,³² KATARINA KRALJIC,⁶ VINCENT LE BRUN,⁶ XIN LIU,³³ PETER MELCHIOR,¹ CLAUDIA L. MENDES DE OLIVEIRA,³⁴ ROGÉRIO MONTEIRO-OLIVEIRA,³⁵ TOHRU NAGAO,³⁶ MASATO ONODERA,³⁷ RODERIK A. OVERZIER,³⁸ DAVID SCHIMINOVICH,³⁹ MALTE SCHRAMM,⁴⁰ RHYTHM SHIMAKAWA,⁴¹ LAERTE SODRÉ,⁴² THAISA STORCHI-BERGMANN,⁴³ TOMOKO L. SUZUKI,⁴ MASAYUKI TANAKA,²⁰ YOSHIKI TOBA,⁴¹ HIDEKI UMEHATA,⁴⁴ JIAQI WANG,⁴⁵ CHARLOTTE WELKER,⁷ KATHERINE WHITAKER,⁴⁶ KUN XU,³⁰ YONGQUAN XUE,⁴⁷ XIAOHU YANG,⁴⁸ AND YING ZU⁴⁸ **The PFS Galaxy Evolution Survey**

Deep HSC+Multi-Wavelength Imaging

12.3 sq. degrees

Goulding

grizy HSC imaging to 1=27, u-band (CLAUDS), Spitzer and J (< 23.7)

Unprecedented combination: multi-plex, depth, wavelength coverage and spectral resolution

Wide range in redshift for diagnostic emission lines

How was the Universe reionized?

First Detection of EoR HI 21cm Signal by LAE-21cm Cross Correlation

Masami Ouchi

- Goal-1: Detection of the cross-correlation signals -> Evidence of early cosmic HI structure
 - Positive cross-correlation at k~0.4 Mpc⁻¹ at ~5 sigma
 - Negative cross-correlation at k~0.1 Mpc⁻¹ at ~3 sigma
- Goal-2: Determination of the CPST scale at z=6.6 with $\Delta k=~0.1$ accuracy
 - First definitive evidence of cosmic ionized bubbles

Bright-End UV LF (2 < z < 7) AGN vs. Star-formation

Harikane et al. 2022

~4 million galaxies at z ~ 2 -7

Galaxies and their dark matter halos

Characterization of the large-scale environment

$\langle z \rangle$ =1.1 PFS Galaxy Redshift Reconstruction

Large Scale	Structure

Component of the Web	Expected Number
$\begin{array}{l} M_{\rm halo} > 10^{13} \\ M_{\rm halo} > 10^{13.5} \\ M_{\rm halo} > 10^{14} \\ {\rm Voids} (z < 2, r > 7 {\rm cMpc}) \\ {\rm Voids} (z < 2, r > 20 {\rm cMpc}) \\ {\rm Voids} (z > 2, r > 7 {\rm cMpc}) \\ {\rm Voids} (z > 2, r > 7 {\rm cMpc}) \\ {\rm Protoclusters} (2 < z < 6) \end{array}$	2200 450 35 132,000 3,000 1000 100

Alan Pearl (Univ. of Pittsburgh)

Connection between galaxies and structure formation

Stellar-to-halo mass (M^*/M_h) ratio with the model comparisons over z ~ 1 - 5

Proto-clusters at z ~ 4 with HSC

Toshikawa et al. 2018

Followup spectroscopy

Galaxies within the large-scale gas distribution

IGM Tomography

- Lyman-α forest absorption in background spectra from HI in the IGM
- Observe 970 galaxies per deg² probing 2.1<z<2.5 IGM
- Sightline separation of 4.2 cMpc which allows 3D tomographic reconstruction on similar scales!
- Unique reconstruction of the cosmic web at z~2.5 (Lee & White 2016)

CLAMATO Survey with Keck (Lee et al 2017)

Zoom-in comparison

Ben Horowitz, K. G. Lee

IGM Tomography & Galaxies

Comparison w/ more realistic hydro simulation including SF & feedback.

Internal properties of galaxies

1.0

Quenching

Lalitwadee Kawinwanichakij

 $LogSFR(H\alpha) [M_{\odot}yr^{-1}]$

[N2; Maiolino+08]

12+log(0/H)

∆log(0/H) [Data-Model]

0.1

-0.

-0

Kashino et al. 2017

FMOS-COSMOS

(see Maiolino & Mannucci 2019 for a review)

e.g., Tremonti et al. Sanders et al. 2021; Strom et al. 2022

Rest-frame UV spectra and stellar metallicities

Kinematics and outflows

Outflow velocity (halo circular velocity from clustering) evolution for M*~10^{10.5} Mo

Yuma Sugahara

•Outflow velocity (V_{out} [50%] or V_{max} [95%] velocity) over z~1-5.

•<u>Testing the hypothesis that the correlation of outflow velocity and</u> <u>circular velocity</u> holds over z~1-5, which suggests the halo mass density increase towards high-z.

Final remarks

- Exploit remarkable image quality with Subaru HSC
- AGN science

GaLight arXiv:2111.08721 (Ding et al. 2021)

Li, JDS et al. 2021a,b; JDS, Li & Ding 2022

